Loading...
HomeMy WebLinkAboutDENALI VIEW General Information (17)10/14/97 TUE 13:48 FAX 907 694 2955 CHUGIAK/EAGLE RVR BR ~001 MtmicipalitYof Anchorage p.(), B,Ix I.q({(;~0 ),ilChm'ugc. Alaska 99519-6(T30 Rick 31!lstrom. .l[a!lor .\Ni'iIIiIt.[GE .MUNICII'AI, I,IIII.L[RII£~, FACSIMILE TRANSMITTAL FORM TO: NAME: DEPARTMENT: OFFICE PHONE: FAX PHONE: FROM: DEPARTMENT: ANCHORAGE MI.,TNI'CIPAL LI~RARI~-'~ OF~Cn mom~: ~ h ~- ~-'~ q FAX PHONE: 604--2955 (numbe~) of sheets, including Ods page a~e being aansm[tte~ to the permn de~i§nalr, d above, PLEASE DELIVF.,R THE PAGES AS SOON AS POSSIBLE THANK YOU. ADDmONAL NOTES: '~"~ ~2~/~,-~ ~ ~ DEPARTMENT OF NATURAL RESOURCES DIVISION OF MINING AND WATER MANAGEMENT February 10, 1999 3601 C S~reet, ,Suite 800 A¢~chorage, ALASKA 99503 5935 Phone: (907) 289-8624 FAX: (907) 562-~384 Paul Myers Skyline View Corporation P.O. Box 670351 Chugiak, Alaska 99567 Re: Carlson's water well RECEIVED FEB 7 6 1999 D MUnicip~lltv of , ept, H ~. ~,. Anchora e~l,,, e~ ~urnsrl Dear Mr. Myers: Enclosed is a response from Jennifer Carlson to our letter of January 9, 1999. It is our intention to visit the Carlson's property sometime this spring. Thank you again for your concern. Gary J. Prokosch Chief, water Resources Section cc: Jennifer and Todd Carlson John Shively, Commissioner Bob Loeffler, Director Jim Cross, HHS J 2/5/1999 Gary J. Prokosch Department of Natural Resources 3601 C Street, Suite 800 Anchorage, Alaska 99503-5935 Dear Mr. Prokosch: in response to your letter dated 1/29/99 I am repeating what I had shared during a telephone conversation with Kelly Litzen on 9/16/97, again with Kelly on 5/28/98 and a third time with Dan Allison on 6/1/98. My well is 480' deep. The static level was reported as being 50' deep by the person who replaced our pump, Jim Sullivan on May 27th 1997. There is no pooling of water near our well nor any indication on our well log that there is a hole in our well casing at or near 8'. Dan Greene of Greene General Contracting was the person who did all of our site work. In response to a telephone conversation that I made to him on 9/1 5/97 he stated that recalled everything to be normal and to code. He is the person who ran the well line to the house. After the well was drilled and the pump installed Dan did all of the work to bring the water to . the house. Any future technical questions should be directed to him. It is my sincere hope that this information will put this matter to rest. Yours very sincerely, rlson 02/05/99 12:11 FAX 907 ~43 4220 Community Plannlns . CROSS ~002/010 MUNICIPALITY OF ANCHORAGE PLATTING BOARD Summary of Action April 1, 1998 AMENDED 5/7/98 AMENDED 2/5/99 ROLL CALL Board Members Present: Caress, Cannelos, Cary, Klein, Penney, Richter, Welker Board Members Excused: Ward Staff Present: Weaver, Ross SUMMARY OF ACTION AND MINUTES Minutes of March 4 and March 18, .1998 - APPROVED SPECIAL ORDER OF BUSINESS Election of new Vice-Chairman: Robin Ward CONSENT AGENDA OLD BUSINESS 1. Public Hearings a. S-10209 Goldenview Gate Subdivision with Variances Postponed to the May 6, 1998 meeting at the request of the petitioner. NEW BUSINESS 1. Public Hearings a. 810054 Denali View Subdivision Postponed to the May 6, 1998 meeting at the request of the petltSoner. DHI CONSULTING ENGINEERS 800 E, Dimond Blvd. Suite 3-545 Anchorage, AK 99515 (907) 344-1385 FAX 344-t383 LETTER OF TRANSMITTAL WE ARE SENDING YOU _ Atlached _ Under separate cover via the following items: '~ Shop drawings .~ Prints .......... _ Plans .................... _ Samples _ Specifications _ Copy of letter _ Change order _ Repods _ Other COPIES DATE NO. DESCRIPTION THESE ARE TRANSMITTED as checked below: /,~ For approval _ As requested _ Approved as noted _ FOR BIDS DUE _ Approved as submilted _ For review and comment _ Other 19 /~For your use _ Returned for corrections __ PRINTS RETURNED AFTER LOAN TO US REMARKS COPYTO SIGNED~~.~ - If enclosures are not as no[ed, please notify us at once. SEPTIC 80LUTIO.$ ~,~ %.."~ ANCHORA(~:, ALASKA 90502 ,oe-p ,cocA'no, TE 'r ' PERFORMED FOR: PAUL MYERS DATE PERFORMED: 11/17/9B LEGAL DESCRIPTION: LOT 11 DENALI VIEW SUBDIVISION ~,~x 3" oFORGANICFRosTROOT MATT :' , SLOPE SITE PLAN ' ' ' SAND I 4 ~ .... ~x x"vc , NFS-SANDY GRAVEL, DRY 9 ,r ~ - OCCASIONAL BOULDER TO 24", ONE ROCK ,50" WAS GROUND WATER S 10 -~ ENCOUNTERED ? NO L ....... 11 , - IF YES, AT WHAT p DEPTH ? E 12 '- ,- DEPTH OF WATER ~ AFTER MONITORING ? ~ DATE: 15 19 PERCOLATION RATE: 1.2 (MINUTES/INCH.) PERCHOLE DIAMETER: 6" 20 TEST RUN BETWEEN: 1.0 FT. AND 1.5 FT. COMMENTS: * PERFORMED BY: _D_E~ HIGH CERTIFY THAT THIS TEST WAS PERFORMED IN ACCORDANCE WITH ~ ALL STATE AND MUNICIPAL GUIDELINES IN EFFECT ON THIS DATE. DATE: * 298TH11A DHI CONSULTING ENGINEERS Civil ° Surveying · Planning November 20, 1996 WO: 96298 Mr. Jim Cross Department of Health & Human Services Environmental Services Division P.O. Box 196650 Re: Denali View Subdivision / Revised Soils Investigation Dear Mr. Cross, On May 5, 1997 we forwarded you the soils investigation for Denali View Subdivision. In the interim period, we drilled a well on Lot 7 that interfered with our earlier test hole for Lot 11 (TH-11 ). Enclosed is test hole log TH11-A and a revised location map Please note that the wells on Lot No. 7 & 9 have been located by survey and are accurately shown. The map has been revised to reflect the current lot configuration and identifies the available area for on-site septic systems. You will find that there is adequate area on all lots for a septic system, a replacement system and a residential well. If you have any questions concerning the above, please give me a call. cc: Paul Myers 298cll 9n.ltr Dimond Center Tower, 5th Floor · 800 E. Dimond Blvd., Suite 3-545 ° Anchorage, Alaska 99515 (907) 344-1385 · Fax 344-1383 DTI002648 I Bristol Environmental Services Corporation A Subsidiary of Bristol Bay Native Cor?oration February 9, 1998 VIA HAND DELIVERY -I-qg Municipality of Anchorage Department of Community Planning and Development Attn: Jerry Weaver Margaret O'Brien Re: Case S-10054 Denali View Subdivision I am providing the enclosed report to you on behalf of the applicant for Denali View Subdivision to address concerns raised by the Platting Board at their November 1997 meeting. Please schedule this case on the agenda for the next Platting Board meeting. Sincerely, James A. Munter, CGWP Principal Hydrogeologist P.O. Box 100320, Anchorage, Alaska 99510 201 E. 56~h Avenue, Suite 301, Anchorage, Alaska 99518 Phone (907) 563-0013; Fax (907) 563-6713 Bristol Environmental Services Corporation A Subsidiary of Bristol Bay Native Corporation EFFECTS OF NEW WELLS AT PROPOSED DENALI VIEW SUBDIVISION, PETERS CREEK, MUNICIPALITY OF ANCHORAGE, ALASKA For Skyline View Corporation P.O. Box 670351 Chugiak, Alaska, 99567 By Bristol Environmental Services Corporation 201 E. 56~h Avenue, Anchorage, Alaska, 99518 Project 8008YM-00 February 9, 1998 P.O. Box 100320, Anchorage, Alaska 99510 201 E. 56tn Avenue, Suite 301, Anchorage, Alaska 99518 Phone (907) 563-0013; Fax (907) 563-6713 Bristol Environmental Services Corporation A Subsidiary of Bristol Bay Native Cor?oration EFFECTS OF NEW WELLS AT PROPOSED DENALI VIEW SUBDIVISION, PETERS CREEK, MUNICIPALITY OF ANCHORAGE, ALASKA Executive Summary The Anchorage Platting Board at their November 1997 meeting indicated the need to perform an analysis of the impacts of new wells at the proposed Denali View Subdivision on surrounding well owners' ability to obtain water. Two models were used, together with all available data, to simulate the effects of new pumping in the area. A Theis model was used to make an initial approximation of water level drawdowns in the area surrounding Denali View. A three-dimensional model known as Modflow was also used to simulate aquifers in the Denali View area more realistically. The two model results are compared and evaluated. Model results were applied to 97 surrounding wells within the radius of influence on a case- by-case basis to determine potential impacts. Both models show negligible impacts from pumping water for eleven new homes at Denali View Subdivision on surrounding wells. We found that some wells currently provide marginal to sub-standard quantities of water and are in need of water system rehabilitation work. We found that all well owners can be expected to reasonably acquire water after full development of the proposed Denali View Subdivision. It is expected that most wells in the Denali View area can be effectively rehabilitated with hydrofracturing, although some water systems may requiring additional storage or well deepening. Our analysis of data from 97 surrounding wells is reasonably conclusive that all surrounding well owners can reasonably acquire water under the new pumping conditions created by development of Denali View Subdivision. This analysis is supported by the drilling of three wells at Denali View that have encountered safe and adequate quantities of water. We recommend that the plat application be approved based on this analysis showing that safe and adequate quantities of water are available for the entire Denali View area and surrounding subdivisions. INTRODUCTION The Anchorage Platting Board at their November 1997 meeting indicated the need to perform an analysis of the impacts of the proposed Denali View Subdivision on surrounding well owners' ability to obtain water. This report describes the results of our work to address this issue. Page 1 Denali View Hydrology: Model analysis report Project 8008YM-00 February 9, 1998 This report was prepared for the exclusive use of Skyline View Corporation for specific application to the Denali View Subdivision project. Bristol Environmental Services Corporation A Subsidiary of Bristol Bay Native Corporation Scope of Work We have reviewed all relevant data and we have performed a comprehensive hydrogeologic analysis. We used two models to simulate the effects of new pumping in the area. We used a Theis model to make an initial approximation of water level drawdowns in the area surrounding Denali View. The Theis model is a widely used model to simulate the effects of pumping wells, however it has limitations in simulating complex aquifer systems. We also used a three-dimensional model to simulate aquifers in the Denali View area more realistically. We used Modflow, a commonly used model written by the U.S. Geological Survey. This model is generally regarded as an industry-standard model for simulating groundwater-flow. The two model results are compared and evaluated. We used the model results in our analysis of all surrounding wells within the radius of influence on a case-by-case basis to determine whether well owners can reasonably acquire water with full development of the proposed Denali View Subdivision. Applicable Municipal codes lack specific criteria by which to evaluate potential water shortage problems. As a result, this analysis closely parallels methods and procedures used by the State Department of Natural Resources to adjudicate water rights. State adjudicators have typically allowed water level declines to occur as long as prior appropriators can reasonably acquire water under the new pumping conditions. RESULTS Hydrogeologic Setting Figure 1 shows a geologic map of the Denali View area. Figure 1 shows that Denali View subdivision is underlain by glacial till (map unit "m" in the southeast corner of section I0, center of map) and metasedimentary rocks. Scimitar Subdivision, immediately west of Denali View, is shown to be underlain by chiefly sand and gravel in glacioalluvium (map unit "g"). The results of soil testing performed for the Denali View Subdivision design are generally consistent with the geologic map. Two wells drilled in Denali View Subdivision tap a confined sand and gravel aquifer at the base of the glacial deposits. One of these wells was used to conduct an aquifer test that resulted in the calculation of a transmissivity value of 650 ft2/day for the sand and gravel aquifer (Letter from J. Munter to P. Myers, June 11, 1997). Most other wells in the Denali View area tap the bedrock aquifer comprised of metasedimentary rocks. Transmissivity values for most of the bedrock aquifer were estimated by analyzing the data contained in a report by Terrasat, Inc. (Report to Municipality of Anchorage, Platting Commission, September 1, 1997). We compiled all wells for which yield and drawdown data were available or could reasonably be estimated, and calculated a geometric mean of the data. This procedure resulted in the calculation of a mean value transmissivity of 5.4 ft2/day for the bedrock aquifer. Denali View Hydrology: Model analysis report February 9, 1998 Page 2 Project 8008YM-O0 This report was prepared for the exclusive use of Skyline View Corporation for specific application to the Denali View Subdivision project. Bristol Environmental Services Corporation A Subsidiary of Bristol Bay Native Corporation At least three wells tapping the bedrock aquifer appear to tap one or more fracture zones that provide relatively high reported yields and flowing or near-flowing water levels. One of these wells was drilled at Denali View subdivision and was flow tested for 5.7 days. The well reportedly yielded 0.5 gpm and 34 inches of stabilized drawdown. Theis Model The Theis model is used to make an initial approximation of water level drawdowns in the area surrounding Denali View. The Theis model is a widely used model to simulate the effects of pumping wells, however it has limitations in simulating complex aquifer systems. The Theis model assumes a single confined aquifer of unlimited lateral extent that receives no recharge. The main advantage of the Theis model is that relatively few data are needed to run the model. The Theis model simulation was performed by assuming that all pumping for 11 lots was from one well located in the center of the subdivision. Using a pumping rate of 3.8 gpm, based on assumed water usage of 500 gpd/lot, an aquifer transmissivity of 5.4 ft2/day, and an aquifer storativity of 0.001, 21 ft of drawdown is projected at a radius of 600 ft after 180 days. 180 days represents the approximate typical duration of the winter no- or low-recharge period in this area. The distance to the nearest existing wells in the area is approximately 600 ft from the center of Denali View Subdivision. Most wells in surrounding subdivisions listed in data tables by Terrasat Inc. (1997) are located 1000 to 2000 ft from the center of Denali View subdivision. Using the same parameters described above except radius, the Theis model calculates 11 ft of drawdown at a 1000 ft radius and 2 ft of drawdown at a radius of 2000 ft. These calculations are considered conservative because all pumping was assumed to come from wells tapping the bedrock. For most wells, calculated drawdowns comprise a very small percentage of the available drawdown in area wells, and would not be expected to have any significant effect on most wells. Further analysis of the impacts to wells follows the results of the Modflow simulations as described below. Modflow Model A Modflow model was prepared to provide a more realistic simulation of aquifers in the area than the Theis model. Modflow is a mathematical groundwater flow model that simulates the directions and rates of water movement through an aquifer system. Partial-differential equations representing the physical processes of groundwater flow are solved by the model. The model requires that the hydraulic properties and boundaries be defined for the modeled area. The aquifer system was overlain by a grid, which was extended in the third dimension to form blocks or "cells." Each cell in the model grid represents a block of permeable material within which the hydraulic properties are assumed to be uniform. Water well drawdown in the Denali Subdivision area was simulated using Modflow as a steady-state conceptual drawdown model. The goals of the Modflow simulations were to: Denali View Hydrology: Model analysis report Page 3 February 9, 1998 Project 8008YM-00 This report was prepared for the exclusive use of Skyline View Corporation for specific application to the Denali View Subdivision project. Bristol Environmental Services Corporation A Subsidiary of Bristol Bay Native Corporation Simulate multiple aquifers. The model was designed to simulate two aquifers separated by a confining unit representing the upper portion of bedrock. The upper layer represents the sand and gravel aquifer, and the lower layer represents the bedrock aquifer. A middle layer represents the upper portion of the bedrock unit, which is simulated as a confining unit. One of the purposes of this simulation is to address the concern that the upper aquifer may provide recharge to lower aquifers, and that extraction from this aquifer may reduce recharge to downgradient wells. The sand and gravel aquifer was simulated in a "bathtub" configuration to simulate the extraction of water from an area that may or may not be important to the recharge of downgradient wells. Simulate a highly permeable fracture zone in bedrock. Three wells are thought to penetrate a single fracture system near the eastern boundary of Denali View Subdivision. Model blocks in that area were assigned higher transmissivity values to simulate a bedrock fracture system in that area. Simulate a realistic geographic distribution of wells. The Modflow model easily accomodates a more realistic distribution of pumping wells compared to the Theis model model. This provides a more realistic simulation of the effects of pumping. Data assumptions used in the MODFLOW packages are as follows. BAS Package Packages used: BAS, BCF, WEL,OC, and SIP Three layer model Layer 1: Unconsolidated aquifer Layer 2: Bedrock, confining layer Layer 3: Bedrock, confined aquifer Grid size: 54 Columns x 48 rows. IBOUND: All cells along model boundary set at constant head (0 ft elevation) Anisotropy: 1.00 (ail layers) BCF Package Layer 1: variable, ranging from 10 ft to 70 ft. Layer thickness: Layer 2:10 ft. Layer 3:500 fi. DELR: Variable, 106 ft to 850 ft. DELC: Variable, 106 ft to 850 ft. Horizontal Hydraulic Conductivity, Layer 1: 10 ft/day (most of aquifer) 100 ft/day in area of sand and gravel aquifer. Denali View Hydrology: Model analysis report Page 4 February 9, 1998 Project 8008YM-00 This report was prepared for the exclusive use of Skyline View Corporation for specific application to the Denali View Subdivision project. Bristol Environmental Services Corporation A Subsidiary of Bristol Bay Native Cor?oration Transmissivity, Layer 2:lxl0-~° ft2/day Transmissivity, Layer 3 10 ft2/day (most of aquifer) 10,000 ft2/day (fracture zones) Vertical Conductance, Layer 1-2:0.1 fl/day Layer 2-3:3 x 10.6 ft/day WEL Package Number of wells: Pumping rate per well: 11 (5 in upper aquifer and 6 in lower aquifer) 500 gpd (based on average 3.33 bedrooms per home and Municipal adequacy criteria of 150 gpd/bedroom). All simulations were run to steady state. Model Calibration. The model was calibrated using data from the two wells drilled at Denali View Subdivision that were flow tested. Model parameters were adjusted to match water level declines observed during the tests. Modflow Impact Analysis. The Modflow model was used to generate estimated drawdown in the bedrock aquifer surrounding Denali View. The simulated drawdown at wells near Denali View range from 0 ft to 5 fl under steady state conditions. Projected drawdowns from the model were used to calculate expected yield reductions at each well. Expected yield reductions ranged from 0 to 0.91 gpm. Effects of Development on Surrounding Wells. Comparison of post-development yields with either initial yields or flow test yields shows that the effects of development are expected to result in inconsequential yield reductions in surrounding wells. Terrasat Inc. (1997) lists nine wells with reported yields below 500 gpd. These wells would likely benefit substantially from hydrofracturing. Yields of these wells could reasonably be expected to increased by at least 0.43 gpm (620 gpd), which was the minimum yield increase reported by the twenty hydrofractured wells evaluated for this report, including the one near Denali View Subdivision (see Appendix). With rehabilitation of low-yield wells, this analysis shows that every well in surrounding subdivisions for which data are available is expected to yield a sufficient volume of water for a four-bedroom home (0.42 gpm) after full development of Denali View Subdivision. This includes the lowest-yielding well reported by Terrasat Inc. (1997), which has a reported yield of 0.00 gpm. Additionally, if other wells or other data are identified indicating the presence of low yield wells not shown in the table, these wells would also be expected to yield enough water for a four-bedroom home after full development of Denali View and deepening or hydro fracturing. Denali View Hydrology: Model analysis report February 9, 1998 Page 5 Project 8008YM-00 This report was prepared for the exclusive use of Skyline View Corporation for specific application to the Denali View Subdivision project. Bristol Environmental Services Corporation A Subsidiary of Bristol Bay Native Corporation CONCLUSIONS A hydrogeological analysis of the effects of the pumping water for eleven new homes at Denali View Subdivision shows that surrounding wells are expected to experience negligible impacts from the new wells. Some wells currently exhibit low yields that are very likely to be successfully rehabilitated by hydrofracturing. A review of data from 20 hydrofractured wells shows that the minimum reported yield increase provides enough water for a four-bedroom home. Similar results can be expected for low-yield wells in the adjoining subdivisions. This analysis is reasonably conclusive that surrounding well owners can reasonably acquire water under the new pumping conditions created by development of Denali View Subdivision. We recommend that the plat application be approved based on this analysis showing that safe and adequate quantities of water are available for the entire Denali View area. LIMITATIONS Work for this project was performed, and this report prepared, in accordance with generally accepted professional practices for the nature of the work completed at the same and similar localities at the time the work was performed. This report was prepared for the exclusive use of Skyline View Corporation for specific application to the Denali View Subdivision project. This report is not meant to represent a legal opinion and no other warranty, expressed or implied, is made. This report was prepared in part based on information provided or prepared by others and, although we believe these sources to be generally reliable, we are not responsible for the accuracy or completeness of that information. REFERENCE CITED Brunett, Jilann, and Michael Lee, 1982, Hydrogeology for Land Use Planning: The Peters Creek Area, Municipality of Anchorage, Alaska, U.S. Geological Survey Water Resources Investigations 82-4120, 6 sheets. Terrasat, Inc., 1997, Report to Municipality of Anchorage, Platting Connnission, September 1, 1997. APPROVAL Bristol Environmental,Services Corporation James A. Munter, CGWP Principal Hydrogeologist Denali View Hydrology: Model analysis report Page 6 February 9, 1998 Project 8008YM-00 This report was prepared for the exclusive use of Skyline View Corporation for specific application to the Denali View Subdivision project. Bristol Environmental Services Corporation A Subsidiary of Bristol Bay Native Cot?oration Appendix Analysis of the Effectiveness of Hydrofracturing for Improving Well Yields Well Yield Increases. Information contained in DHHS files for Kyle and Erica Subdivision, provide detailed data for 19 wells in the Skyline Drive area of Eagle River that have been hydrofractured since 1988. The average reported yield of wells when drilled was 0.6 gpm. The average reported yield of wells prior to hydrofracturing was 0.33 gpm. The average reported yield of wells after hydrofracturing was 1.76 gpm, a more than fivefold increase in yield. All owners report satisfaction with the procedure. The range of reported yield after hydrofracturing was from 0.63 gpm to 4.2 gpm. The data show that even the least successful well provides sufficient water to pass a Health Authority Approval for a six-bedroom home. The number of wells in the Skyline View area that have received hydroffacture treatment is approximately 20 percent. The data indicate that actual yields prior to hydrofracture treatment are lower than reported yields at the time of drilling. It seems likely that well yields decline over years of use as a result of plugging of well bores by mineral encrustation or iron-bacteria precipitates. Hydrofracturing appears to be effective as a normal treatment for declining well yields in bedrock wells. Water-Level Increases. The wells in Skyline Drive area also showed substantial increases in reported water levels after hydrofracturing. Of five wells with reported water levels before and after hydroffacturing, all wells showed a rise of reported water level, with an average reported rise of 81 ft. Experience Adjacent to Denali View. In the Denali View Subdivision area, only one well is known to have been hydroffactured. The owner reported in a letter included in an information packet distributed to the Anchorage Platting Board that the well yield was increased by a factor of 3.6 times to 0.6 gpm or 860 gpd. The owner reports that they also have a holding tank, "so that we don't have a water problem in the home". This appears to be another successful application of hydrofracturing, this one immediately adjacent to Denali View Subdivision. Water Shortage Perceptions. The water level data from hydrofractured wells in the Skyline Drive area provide an explanation for the widespread perception of an areawide water shortage in the Denali View area. Waterbearing fractures in producing wells can become plugged over time from mineral encrustation or accumulation iron-bacteria compounds and produce low yielding wells and low water levels. Low water yields can also result when drilling fails to encounter significant water-producing fractures and wells are pumped. Low water levels and low yields in wells in the Denali View area have led to a widespread perception that there is an area-wide water shortage in this area. Poorly producing wells and wells with partially plugged wellbores that are in use for water supply tend to exhibit anomalously low water levels compared to nearby wells. These low water levels have been erroneously interpreted to indicate an overall lowering of water levels in the aquifer. Graphic Denali View Hydrology: Model analysis report Page 7 February 9, 1998 Project 8008YM-00 This report was prepared for the exclusive use of Skyline View Corporation for specific application to the Denali View Subdivision project. Bristol Environmental Services Corporation A Subsidiary of Bristol Bay Native Corporation evidence that water levels in the aquifer do not suffer from areawide lowering was provided by the drilling of a flowing artesian well in Denali View Subdivision in 1997. Hydrofracturing opens up plugged wellbores, creates interconnecting fracture systems in the aquifer, and restores water levels to higher levels that are representative of the aquifer. Concerns about Hydrofracturing. There is a concern that hydrofracturing could lower water levels and allow water to leak out of wells. Following a review of the well information in the Denali View area, no evidence was found indicating that this is likely. Although it is theoretically possible to have lower water levels after hydrofracturing in some areas, this would be an indication that the well only taps the uppermost portion of the aquifer. Such a well should be deepened to tap the main portion of the bedrock aquifer and hydrofractured if sufficient well yields are not obtained by drilling. Another concern of hydrofracturing is that it could lead to an increase in nitrates in well water. In the Skyline Drive area, DHHS is not aware of any data from hydrofractured wells indicating that hydrofracmring is causing such a problem (J. Cross, DHHS, Oral Commun., 1998). Applicability of Hydrofracturing to Denali View and Surrounding Subdivisions. The geology and aquifer conditions in the area of Denali View Subdivision are very similar to those in the Skyline Drive area of Eagle River, and similar results from hydrofracmring can be expected. While hydrofracturing is a fairly common procedure in the Skyline Drive area (approximately 20 percent of all wells), it is rare in the Denali View area (approximately one percent of wells). This may be attributable to the relative newness of the procedure in this area, with the first known hydrofracture procedure performed approximately 10 years ago. The frequency of low yield wells in the Denali View area appears to be approximately the same as in the Skryline Drive area. The results of hydrofracturing in the Skyline Drive area are consistently favorable, and hydrofracturing is concluded to be a reasonably safe and effective treatment for bedrock wells suffering from chronic low well yields. Denali View Hydrology: Model analysis report Page 8 February 9, 1998 Project 8008YM-00 This report was prepared for the exclusive use of Skyline View Corporation for specific application to the Denali View Subdivision project. U.S. GEOLOGICAL SURVEY MODULAR FINI~£E DIFFERENCE GROUND WATER MODEL 0Denali view, Anchorage~ Alaska January 7, 1998 3 Layers~ 54 Column%s, 48 ROW . Steady State - Su 3 LAyERs 48 ROWS 54 COLUMNS 1 STRESS PERIOD(S) IN SIMI~LATION MODEL TIME UNIT IS DAYS 0I/O UNITS: ELEMENT OF IUNIT: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 I/O LrNIT~ 31 32 0 0 O 0 0 0 39 0 0 42 0 0 0 0 0 0 O O 0 0 0 0 0BAS1 BASIC MODEL PACKAGE, VERSION 1, 9/1/87 INPUT READ FROM UNIT 1 ~RRAYS RHS ~ BUFF WILL SHOE MEMORY, START HEm WILL NOT BE SAVED -- DRAWDOWN CANNOT BE CALCLrI~TED BOU~rDARY ARP~y FOR LAyEK 1 WILL BE READ ON UNIT 60 USING FORMAT, {5412) 9 0 16 0 17 0 2O 0 24 26 27 29 30 34 35 36 37 0 39 0 40 BOUNDARy ARRAy FOR LAYER 2 WILL BE REkDONUNIT 61 USING FOR~4~T: {5412) 1 2 3 4 5 6 7 8 9 10 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 0 2 0 3 0 4 0 5 25 26 27 29 30 0 36 D 37 BOLINDARY ARRAy FOR LAYER 3 WILL BE READ ON UNIT 62 USING FORMAT~ (54I~} 1 2 3 4 5 6 7 8 ~ 10 o 2 o 3 4 5 6 7 9 0 20 24 1 29 1 0 31 0HEADS WILL BE SAVED ON UNIT 81 DRAWDOWNS WILL 8E SAVED ON UNIT 0 DELR WILL ME READ ON UNIT 67 USING FORMAT: (10F7.2) 455.12 212.56 212.56 212.56 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.2S 106.28 106.28 106.28 106.28 106.2S 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.2B 106.28 106.28 106.28 106.28 106.28 106.28 106.28 212.56 212.56 212.56 212.56 425.12 425.12 850.24 850.24 850.24 850.24 1700.5 1700.5 DELC WILL BE READ ON L%TIT 68 USING FORMAT~ 850.24 850.24 850.24 425.12 212.56 212.56 212.56 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 212.56 212.56 212.56 425.12 850.24 HYD. COND. ALONG ROWS FOR LAyER 1 WILL BE READ ON,IT 69 USING FOP34AT, (54F4.0) 1 2 3 4 5 6 7 8 9 10 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 ~7 38 39 40 0 2 o 3 ' 0 4 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.C00 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.900 5.000 5.000 5.000 B.000 5.000 5.000 5.000 5.000 5.000 5.800 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.200 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.200 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.200 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 S,O00 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.G00 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.¢00 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5,000 5.000 5,000 5,000 5,000 5,000 5,000 5.000 0 26 0 27 50.00 5,000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 S.o00 5.000 5,000 5.000 12 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5,000 5,000 5.000 5,000 5,000 5.000 5.000 5.000 50.00 50.00 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5,000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 13 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5.000 5,000 5.000 5.000 5,000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 50.00 50.00 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 14 5,000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 50,00 50.00 5.000 5.000 5.000 S.O00 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5,000 5.000 5,000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 15 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 50.00 50.00 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 16 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 50.00 50,00 5.000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5,000 5,000 5.000 5.000 5,000 5.000 5.000 5,000 5,000 5,000 5,000 5.000 5.000 5,000 5,000 17 5.000 5,000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.~00 5.000 50,00 50.00 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 18 5,000 5.000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 50.00 50.00 5,000 5.000 5.000 5.000 5.000 5,000 5.000 5,000 5,000 5.000 5.000 5,000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5,000 5,000 5.000 5,000 5,000 5.000 5.000 5.000 19 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 50,00 50.00 5.000 5.000 5,000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 20 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 50,00 50.00 50.00 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 21 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5,000 5,000 5.000 5,000 5.000 50.00 50.00 50.00 5.000 5.000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5.000 5,000 5.000 5.000 5,000 5.000 5,000 5,000 5,000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 22 5,000 S,OOO 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 50.00 50.00 50.00 50.00 5,000 5.000 5.000 5,000 5.000 5,000 5.000 5,000 5.000 5.000 S.000 5.000 5,000 S.O00 5.000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5.000 5,000 5,000 5,000 5,000 5.000 5.000 5,000 5.000 5,000 23 5.000 5,000 5.000 5,gO0 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5,000 5.000 5.000 5.000 5.000 50.00 50.00 50.00 50,00 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 24 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 50,00 50.00 50.00 50.00 50.00 50,00 50,00 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5,000 5.000 5*000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 25 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 S,000 5.000 5,000 S,O00 5,000 5.000 50,00 50.00 50,00 50,00 50.00 50.00 50.00 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5*000 5.000 5.000 5.000 5.000 5*000 5,000 5*000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5,000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5*000 5.000 50,00 50.~0 50.00 50.00 50.00 50,00 50.00 50.00 5.000 5,000 5,000 5.000 5.000 5.000 5.000 S,O00 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5*000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 50.00 50.00 50,00 50.00 50.00 50.00 50.00 50,00 5.000 5.000 5.000 5.000 S.O00 5.000 5.000 5,000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5,000 5.000 5,000 5,000 5.000 5.000 5,000 5,000 28 S.O00 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5,000 5,000 5,000 5.000 5,000 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 5,000 5,000 5,000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 29 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 50,00 50,00 50.00 50.00 50.00 50.00 50.00 50.00 5,000 5.000 5,000 5.000 5.000 5,000 5,000 5.000 5,000 5.000 5,000 5.000 5,000 5.000 5.000 5,000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 30 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5,000 5.000 5,000 5,000 5.000 5,000 5,000 50,00 50,00 50.00 50,00 50.00 50.00 50.00 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 S.O00 5.000 5,000 5.000 5,000 5.000 5.000 S.O00 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 31 5.000 5.000 5.000 5,000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 50.00 50.00 50.00 50.00 50.00 SO,O0 50,00 5.000 5.000 5,000 5,000 5,000 5,000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5,000 5.000 5,000 5,000 5,000 5.000 5.000 5.000 5,000 5.000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 32 5,000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 50.00 50.00 50.00 50.00 50,00 50.00 50.00 5,000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5,000 5.000 33 5.000 5.000 5,000 5.000 5,000 5,000 5.000 5,000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 50,00 50,00 50.00 50.00 50.00 50,00 50.00 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5,000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5,000 5.000 5.000 5,000 5.000 5,000 5,000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5.000 5,000 34 5.000 5.000 5,000 5.000 5,000 5.000 5,000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 50.00 50,00 50.00 50,00 50.00 50.00 50,00 5,000 5.000 5.000 5.000 5.000 5,000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 35 5.000 5.000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 50,00 50.00 50.00 50.00 50.00 50,00 50.00 5,000 5,000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 36 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5,000 5,000 5,000 50.00 50,00 50.00 50.00 50.00 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5,000 5.000 5,000 5,000 5,000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5,000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 37 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5,000 50.00 50,00 50.00 50,00 50,00 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5,000 5.000 5,000 5.000 5,000 5,000 5,000 5,000 S,O00 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 38 5,000 5,000 5.000 5.000 5,000 5.000 5,000 5,000 5,000 5,000 5,000 5.000 5.000 5.000 5,000 50.00 50.00 50.00 50.00 5.000 B,O00 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5,000 5,000 0 43 5.000 S.000 S.O00 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 BOTTOM FOR LAYER 1 WILL BE READ ON UNIT 70 USING FORMAT~ (54F4.0] 1 2 3 4 5 6 7 ~ 9 10 31 32 33 34 35 36 37 38 39 40 -50.00 50.00 50.00 -50.00 -50.00 -50.00 50.00 -70.00 -70,00 -70.00 70,00 -70.00 -70,00 70.00 -50.00 50.00 -50.00 -50.00 -50.00 50.00 40.00 -40,00 -50.00 50,00 40,00 40.00 -40.00 40,00 30.00 40.00 2 70.00 70.00 70.00 -50.00 -50.00 -50.00 50.00 50.00 50.00 -50.00 50.00 50.00 -50.00 50,00 50.00 50.00 -50.00 50.00 -70.00 70.00 70,00 -70.00 70.00 -50.00 -50.00 -50.00 50,00 50,00 -50,00 -50.00 40.00 40.00 -40,00 40.00 -40.00 30,00 -30,00 -40.00 -30.00 30.00 -25.00 25,00 -15,00 -12.00 10,00 -10.00 10.00 10.00 10.00 -10.00 3 50.00 -50,00 50.00 -50.00 -50,00 -50,00 -50.00 50.00 50.00 -50.00 50.00 -50.00 -50.00 -50.00 -50.00 50.00 50.00 -50.00 -50.00 -70.00 70.00 -70.00 50.00 -50.00 -50.00 -50.00 50.00 -50,00 -50.00 -40.00 40.00 -40.00 -40.00 -40.00 -30.00 -25.00 25.00 20.00 20.00 -15.00 4 50.00 -50.00 -50.00 -50.00 -50.00 -50.00 50,00 -50.00 50.00 -50.00 -50.00 50,00 -50,00 -50.00 50.00 50.00 -50.00 -50.00 -50.00 50.00 -50.00 50.00 -50.00 50,00 -50.00 50.00 50,00 -40.00 -40.00 -30.00 -30.00 25.00 -25.00 25.00 -20.00 20.00 15.00 -10.00 -10.00 -10.00 5 -50.00 50.00 -50.00 50.00 -50.00 50,00 -50.00 -50.00 -SO.D0 -50.00 -50.00 fi0.00 -50.00 50.00 50,00 50,00 -50.00 -50.00 50.00 -50.00 -50.00 50.00 50.00 50,00 -50.00 40,00 -40.00 -40.00 30.00 -25.00 -lO.00 10.00 -10.00 10.00 -10.00 10.00 10.00 -10.00 .10.00 .10.00 10.00 -10.00 10.00 -10.00 6 50.00 -50.00 50.00 -50.00 50.00 -50.00 50.00 50.00 50.00 50.00 -50.00 50.00 -50.00 50.00 -50.00 -50.00 50.00 50.00 50.00 50.00 -50.00 50.00 -50.00 50.00 -40.00 40,00 30.00 -30.00 -25.00 20.00 15.00 -15.00 10.00 -10.00 10.00 -10.00 -10.00 -10.00 -10.00 -10.00 7 -40.00 -50.00 50.00 -50.00 50.00 50.00 -50,00 -50.00 -50.00 -50.00 50.00 -50.00 50.00 -50.00 -50.00 50.00 50.00 -50,00 50,00 -50.00 50.00 50.00 -50.00 40.00 -40,00 -30.00 -25.00 2500 -20,00 -15.00 8 50,00 50,00 -50.00 -50.00 -50.00 50.00 -50.00 50.00 -50,00 -50.00 50,00 -50,00 -50.00 -50.00 ~50.00 50.00 -50,00 -50.00 SO,O0 -50.00 -40.00 -40.00 40,00 40.00 -30.00 -30.00 -25.00 2000 -15.00 10.00 0 9 50.00 -50,00 50,00 50,00 -50.00 50,00 50.00 -50.00 -50.00 -50.00 -50.00 -50.00 -50.00 50.00 50.00 -50,00 -50.00 -50.00 50.00 -40,00 ~50.00 -50.00 -50.00 -50.00 -50.00 50.00 -50.QO 50.00 -50.00 -50,00 -50,00 -50,00 -50.00 50.00 -40.00 -40,00 30.00 -30.00 -30,00 25.00 20,00 -15,00 -12.00 -12.00 -10.00 -10.0o -10.00 -10,00 410.00 lO.O0 -10.00 10.00 10.00 -10.00 50,00 50,00 50,00 -50,00 50.00 -50,00 -50,00 50.00 -50.00 -50,00 50,00 -50,00 -50.00 -40.00 -40.00 -90.00 -10.00 -10,00 10,00 -10.00 10,00 10.00 -10.00 10.00 -50.00 -50,00 -50,00 -50.00 -50.00 -50.00 -50.00 50.00 50.00 -50.00 -50.00 -50.00 -40,00 -40.00 -40,00 90.00 -30.00 -25.00 25.00 -20.00 15.00 -15.00 -12.00 -10.00 -50,00 -50.00 -50.00 -50,00 -50.00 -50.00 -50.00 -50.00 50.00 50,00 -50.00 -40,00 -40,00 -40,00 40.00 90.00 30,00 25,00 -25,00 20,00 -15.00 -12.00 10.00 -10.00 -50.00 -50.00 SO.O0 -50.00 -50.00 50.00 -50.00 -50.00 -40.00 -40.00 -40.00 -40.00 -40.00 -40.00 -40.00 90,00 25,00 -25.00 -20.00 -20.00 -15.00 -12.00 -12.00 10.00 50.00 -50.00 -50.00 -50.00 -50.00 -50.00 -50.00 50,00 -40.00 -40.00 40.00 40,00 -40.00 440,00 40,00 -80.00 50,00 -50,00 -50.00 -50.00 -50,00 50,00 -50.00 -50.00 40.00 -40.00 -40,00 -40.00 40,00 40.00 -30,00 -80.00 50.00 -50.00 -50.00 -50.00 50,00 50,00 -40,00 -50.00 -40,00 40,00 -40,00 -40.00 -40.00 -30,00 -30,00 -80,00 0 25 0 26 0 27 0 28 0 29 0 30 0 31 0 32 33 34 36 37 39 40 -40,00 -50.00 40.00 -65.00 40.00 40.00 -62.00 -40,00 -30.00 -30,00 40.00 -25,00 -40.00 25.00 40.00 40.00 -75,00 -40.00 75.00 10.00 -40.00 70,00 -10.00 -40.00 70.00 15.00 12.00 -10,00 -10.00 -12.00 -12.00 -15.00 -15,00 15,00 -15,00 -20.00 -20.00 -20.00 -20.00 20,00 20.00 715.00 15,00 -15.00 12.00 -12.00 -10.00 -10.00 -10.00 -10.00 -10.00 710.00 -10.00 0 41 -80.00 -80.00 -~0.00 -80.00 -30.00 -30,00 40,00 -40.00 40.00 -40.00 -40,00 -30.00 -30.00 -30.00 -25,00 -25.00 20.00 2fl.00 -20.00 -20,00 -20,00 ~25,00 25.00 25.00 0 42 7000 70,00 -70.00 -70.00 -30.00 40.00 40.00 40.00 40.00 -40.00 -40.00 -30.00 30.00 30.00 -20.00 -15.00 -15.00 15.00 -20.00 -20.00 -20.00 -25.00 -25.00 25,00 25.00 25.00 -25.00 -25.00 -25.00 -25.00 -20.00 15.00 15.00 -12.00 -12.00 50.00 40.00 -40.00 -40.00 -40.00 -40,00 30.00 30.00 30.00 -30,00 -30.00 -30.00 -30,00 30.00 -30.00 -30.00 -25,00 20.00 20,00 15,00 -15.00 0 44 -70.00 70,00 -70.00 -40.00 -50.00 -50,00 -50.00 -50,00 -50.00 -50.00 40.00 40,00 -40.00 -40.00 30.00 30,00 -30,00 -30.00 -30.00 -30,00 -40.00 730,00 -30.00 -30,00 -30.00 -30,00 30,00 30.00 30.00 30.00 -30,00 -25.00 20.00 -20.00 -15.00 0 45 70.00 -V0,00 70.00 70,00 70.00 -70,00 -70.00 ~50,00 -50,00 -50.00 50,00 50.00 50,00 -40.00 -50.00 -40.00 -40,00 -40.00 -40,00 -40,00 -40.00 20,00 -20,00 -I0.00 710,00 40.00 -40.00 -25.00 -20,00 -20.00 -20.00 -25.00 -20.00 40.00 -40.00 -40.00 30.00 25.00 -25.00 25,00 25.00 -25.00 -30.00 -30,00 25,00 50,00 50.00 -50.00 -30.00 30.00 -30,00 -30,00 30.00 -30,00 30,00 30.00 -30.00 -50.00 50.00 -50.00 -40.00 -40.00 30.00 -40.00 40.00 40.00 -70.00 -50.00 -50.00 740,00 -40.00 -40.00 -40.00 -40.00 40,00 VERT HYD COND /THICIGgESS FOR LAYER1 WILL BE READ 0N UNIT 71 USING FORMAT: (54F4.0) 1 2 3 4 5 6 7 8 9 10 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 .1000 ,1000 .1000 ,1000 .1000 .10O0 .1000 .1000 .1000 .1000 .1000 .1000 .1000 ,1000 .1000 ,1000 .1000 .1000 .1000 .1000 .]000 .lOOO ,1000 .1000 .1000 ,1000 ,1000 ,1000 .1000 .1000 .1000 .1000 .1000 .1000 0 6 0 7 0 8 0 9 0 10 0 17 0 18 0 19 0 20 0 21 .1000 .1000 ,1000 .1000 .1000 .1000 ,1000 .1000 .1000 .1000 .1000 .1000 .1000 ,1000 .1000 .1000 .1000 ,1000 .1000 .1000 .1003 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .lOOO .1000 .1000 .lO00 .1000 .lO00 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .I000 .1000 .1000 .Z000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 ,1000 ,1000 .1000 .1000 ,1000 .1000 .1000 .1000 .1000 .1000 ,1000 .1000 .1000 TRANSMIS. ALONG ROWS FOR i~YER 2 WILL BE RE;%DONUNIT 72 USING FORMAT: (54F4.0] i 2 3 4 5 6 ? 8 9 10 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 0 20 0 21 0 22 0 24 0 25 0 26 32 34 1.0000E 10 1.0000g 10 i,O000E-10 1.0000E-10 1,0000E-10 1,000GE-10 1.0000E 10 0 35 0 36 0 37 0 38 VERT HYD CON~D /T~ICk~ESS FOR LAYER 2 WILL BE R~AD ON ~NIT 73 USING FOR~4AT: (54F4.0) 42 43 44 45 46 47 48 49 50 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E~06 ].0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.000OE-06 2 3.0000E-06 3.0000E-06 3,0000E-06 3,O000E 06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E 06 3,0000~-06 3.0000E 06 3.0000E 06 3,O0O0E-06 3.0000E-06 3.0000E 06 3,0000E-06 3.0000E~06 3.0000E~06 3*0000E 06 3.0000E-06 3.0000E 06 3.0000E-06 3,0000E-06 ~.0000E 06 3.0000E~06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3 3.0000E-06 3.0000E 06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E~06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E 06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E~06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E 06 4 3.0000E-06 3.0000E 06 3.0000E-06 3.0000E-06 3.0000E~06 3.0000E-06 3.0000E-06 3.0000E~06 3.0000~ 06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E 06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E 06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E 06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 5 3.0000E-06 3,0000E 06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000~ 06 3,0000E-06 3,0000E 06 3.0000E-06 3.0000~-06 3.0000E 06 3.0000E-06 3.0000E 06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E 06 3.0000E-06 3.0000E-06 3.0000E~06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E 06 ~.0000E-06 3.0000E-06 6 3.OO00E-O6 3,0O00E 06 3.0OOOE-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E 06 ~,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E 06 3.0000E-06 3.0000E.06 3.0000E-06 3.0000E 06 3.0000E-06 3.0000E 06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E 06 3.0000E-06 3.0000E-06 3.0000E 06 3.0000E-06 3.0000E-06 7 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E 06 3.0000E-06 3,0000E 0g 3*O000E-O6 3.0000E 06 3,0000E-06 3.0000E~06 3.0000E 06 3.0000E-06 3.0000E-06 3,0000E 06 ],O000E-06 3.0000E 06 3.0000E-06 3.0000E 06 3.0000E-06 3.0000E-06 3.0000E 06 3.0000E-06 3.0000E 06 3.0000E-06 3.0000E-06 3.0000E~06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E 06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E 06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E 06 3,0000g 06 3.0000E 06 3.0000~-06 3.0000E 06 ~.O000E-06 3.0000E 06 3.0000E-06 ~.0000E-06 3.0000E-06 3.0000E-06 3,0000E 06 3.0000E-06 3.0000E 06 3.0000E 06 0 17 3.0000E 06 3.0000E-06 5.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E~06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E 06 0 18 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000~-06 3.0000E-06 3.0000~-06 3,0000E-06 ].0000E 06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.O0OOE-06 3,0000E-06 ],O000E-06 3,0000E 06 3.0000E-06 3,0000E 06 3.0000E-06 3.0000E 06 3,0000E-06 3.0000E 06 3,0000E-06 3,0000E 06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3,0000~-06 3.0000E-06 3,0000E 06 3.0000E-06 3.0000E-06 3.0000E~06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E 06 3,0000E 06 3.0000E~06 3.0000E-06 3,0000~-06 3.0000E 06 3,0000E 06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E 06 3.0000E-06 3.0000E-06 3.0000E 06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3.0000~ 06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E 06 3,0000E 06 3,0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E 06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000~ 06 3.0000E-06 33 3*0000E 06 3.0000~ 06 3.0000E-06 3.0000~-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 ~.00OOE-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E~06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E 06 5.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E 06 3.0000E-06 34 3.0000E~06 3.0000E~06 3.0000E-06 3.00DOE-06 3.QOOOE-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E~06 3,0000E-06 3.0000E 06 3.0000E-06 5.0000E-06 3.0000~06 3.0000E-06 3,0000E-06 3.0000E 06 3,0000E-06 3.0000E 06 3.0000E~06 3.0000E 06 3.0000E 06 3.0000E-0G ~,O000E 06 35 3.0000E 06 3.0000E 06 3.0000E-06 3.0000E 06 3.0000E-06 3.0000E 06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E~06 3,0000E-06 3.0000~-06 3.0000E~06 3.0000E-06 3.0000E~06 3.0000E 06 3.0000E~06 5.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3,0000E 06 3,0000E 06 3.0000E 06 3,0000£-06 3.0O00E 06 3.0000E 06 3.0000E 06 3.0000E 06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E~06 3,0000E 06 3.0000E 06 3,0000E 06 3,0000E-06 3.0000E 06 3.0000E-06 3.0000E 06 3.0000E-06 3,0000B 06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E 06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E 06 3.0000E-06 3.00DOE-06 3,0000E-06 ],OO00E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E 06 3.0000E-06 3.0000E-06 3,0000E~06 3,0000E-06 3.0000E 06 3.0000E-05 3.0000E-06 3.0000~-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E 06 3.0000E-06 3.0000E-06 3,0000E 06 3.0000E-06 3.0000E 06 3.0000E-06 3,O000E 06 3,0000E-06 3.0000E 06 3.O000E 06 3.0000E-06 3,0000E 06 3,0000E-06 3,00O0E-O6 3.0000E 06 3.0000E-06 3.0000E 06 3.0000E 06 3,0000E-06 3.0000B-06 3,0000E-06 3,0000E-06 3,0000E~06 3.0000E-06 3.0000E-06 3,0~00E-06 3.0000E-06 3,0000E-06 3.0000E~06 3,0000E 06 3,0000E~06 3.0000E~06 3.0000E~06 3,0000E~06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E 06 3.0000E-06 3.0000E-0~ 3.0000E 06 3,0000E-06 3.0000E-06 3.0000E 06 3.0000E 06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E 06 3,0000E 06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3,0000E 06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E 06 3,0000E-06 3.0000E-06 3.0000E 06 3.0000E-06 3.0000E 06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E 06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E~06 3.0000E 06 3.0000E-06 3,0000E-06 3,0000E-06 3,0000E 06 3.0000E-06 3,0000E-06 3,0000E 06 3.0000E-06 3,0000E 06 3.0000E 06 5,0000E-06 3.0000E~06 3.0000E-06 3,0000E 06 3.0000E-06 3,0000E-06 3.0000E 06 3,0000E 06 3.0000E-06 3,0000E 06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E~06 3,0000E 06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E 06 3.0000E~06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E 06 3,0000E 06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 TRANSMIS. ALONG ROWS FOR LAYER 3 WILL BE READ ON UNIT 75 USING pOR~AT~ (54F4.0) 1 2 3 4 5 6 7 8 9 31 32 33 34 35 36 37 38 39 40 10.00 10,00 10.00 10.00 10.00 10,00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10,00 10.00 0 19 20 22 24 25 27 29 10.00 9.9990E+04 9.9990E+04 9.9990E+04 9.9990E%04 10.00 10.00 10.00 9.9990E+04 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10,00 36 10.00 10,00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 lO.O0 10.00 10,00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 47 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10,00 10,00 10.00 10.00 10.00 10.00 10.00 11 WELLS ............................... NUMBER OF TIME STEPS = 1 0 357 ITERATIONS FOR TIME STEP 1 IN STRESS PERIOD 1 0MAXIMUM HEAD CS{ANGE FOR EACH ITERATION= 3 28 29 -66.800 2 3 25 29 -66.800 3 3 23 29 66.800 4 3 16 28 -66.800 5 3 18 26 -66.800 6 1 27 23 -66.800 7 30 23 -66,800 8 30 21 66.800 9 30 19 ~66.800 10 0 HEAD C~L~GE LAyER,ROW,COL HEAD CH~GE i~YER,ROW,COL HEAD CF~ANGE i~yER,ROW,COL HEAD C~L~GE LAyER,ROW,COL HEAD C~GE LAyER,ROW~COL -.3991 .2937E 01 3, 26~ 26) .2479E 01 3, 29, 351 .5706E-01 3, 26, 26) -.1687E-01 3, 29, 35) .4588E-01 3, 26, 26) -.1538E-01 3, 24, 27} -,2756 3, 25, 23) ,327§E-01 3, 25, 23) -.2648E 01 3, 29, 35) .4001E-01 3, 29, 35) .3675E 01 3, 25, 23) -.2103E 01 3, 23, 28) .2~79 3, 22, 40) ,1249 3, 30, 39) .6865E-01 3, 22, 40) -,1134 3, 30, 39} -,6149E-01 3, 22, 40} ,1040 3, 30, 39) -.5142E-01 3, 22, 40) -.8746E-01 3, 30, 39) -.4711E-01 3, 23, 26) .8803 3, 12, 19) .2394 3, 23, 26) -.6767 3, 25, 35) .2016 3, 23, 26) -.5835 3, 25, 35) .1785 5, 23, 26) -.5301 3, 25, 3~) .1638 3, 23, 26) -.4857 3, 25, 35) .1508 3, 23, 26) -.4452 3, 25, 25) .1385 3, 23, 26) -,4078 3, 25, 35} ,1270 3, 23, 26) -.3734 3, 25, 35] .1164 3, 23, 26) .3419 3, 25, 35) .1066 3, 23, 26) -.3130 3, 25, 35) .9764E-01 3, 24, 28) 3, 26, 35) 3, 29, 29) 3, 26, 35) 3, 29, 29) 3, 26, 35) 3, 29, 29) 3, 26, 35) 3, 29, 29) 3, 26, 35) 3, 29, 29) 3, 26, 35) 3, 99, 29) 3, 26, 35) 3, 29, 29} 3, 26, 35) ,2040E 01 ,7647E 02 .6409E-02 3, 29, 35) .1471E-01 3, 26, 26) .4901E-02 3, 29, 35) .1346E-01 3, 26, 26) -.4487E 02 3, 29, 35) .1233E-01 3, 29, 35) .9905E-02 3, 22, 40) .3314E 01 3, 25, 35) 3, 30, 39} .17aSE-01 3, 23, 26) CELL BY CELL FLOW TE~M FLAG =83 CONST~WTHEAD" BUDGET VALUES WILL BE SAVED ON UNIT 83 AT E~fDOF TIME STEP 1, STRESS PERIOD 1 "FLOW RIGHT FACE ,~ BUDGET VALUES WILL BE SAVED ON UNIT 83 AT END OF TIME STEP1, STRESS PERIOD 1 "FLOW FRONF FACE ,~ B%TDGET VALUES WILL BE SAVED ON [INIT B3 AT END OF TIME STEP 1~ STRESS PERIOD 1 "FLOW LOWER FACE ,, BUDGET VALUES W~LL BE SAVED ON UNIT ~3 AT END OF TIME STEP1, STRESS PERIOD WELLS'~ BUDGET VALUES WfLL BE SAVED ON UNIT 83 AT END OF TIME STEP 1, STRESS PERIOD 1 HEAD IN LAYER 1 AT END OF TIME STEP 1 IN STRESS PERIOD 1 1 2 3 4 5 6 7 8 9 10 11 12 16 17 18 19 20 21 22 23 24 25 26 27 31 32 33 34 35 36 37 38 39 40 41 42 46 47 48 49 50 51 52 53 54 .4411E-01 3, 26, 35) 6 7 9 0 10 0 14 0 16 0 17 24 0 29 0 32 1.6 17 18 19 30 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 HEAD IN LAYER 3 AT END OF TIME STEP i IN STRESS PERIOD I 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 -1.8 1.9 2.D -2.1 -2.2 -2.3 -2.4 -2.4 2.5 2.6 2.6 -2.6 -2.6 -2.6 2.6 -3.5 3.4 -3.3 3.2 3.1 -3.0 2.9 2.7 2.6 2.5 -2.4 2.3 2,1 1.9 1.7 -2.4 2.5 2.7 -2.9 3.0 -3.2 3.4 3.5 3.7 3.8 -3.9 3.9 3.9 -3.9 3,9 -3.8 3.7 3.6 -3.5 3 .3 -3.2 -3.1 2.9 2.8 2.7 2.5 2.4 2.2 2.0 1.~ -2.5 2.7 2.~ -3.! 3.2 -3.4 -2.6 -3.8 4.0 4.1 -4.g 4,3 4.3 4.3 4.3 -4.2 -4.0 3,9 -3.7 3.6 -3.4 -3.3 3.1 3.0 2.8 2.7 2,5 2.3 2.1 1.9 5,0 -4,? 4.5 4.3 -4.1 3.9 -3.7 -3.5 -3,3 -3 .1 2.9 2.8 -2.5 -2,3 -2.0 3.0 -3.3 -3.6 3.9 -4.2 -4.5 4.9 5,3 -5.7 -6.1 -6.4 -6.7 -6.8 -6.6 -6.3 -7.7 =7.4 -7.0 6.6 -6,2 5,8 5.4 5.0 -4.6 4.2 -3.9 -3.6 -3.2 -2.7 -2.4 3,I -3.3 3,6 -3.9 -4.2 -4,6 -5.0 5,4 5.8 -6.4 -7.1 7.7 -7.V 9.0 -7,8 -7.3 -6.9 -6.5 -6.2 ~5.8 5,4 -5.1 -4,7 -4.4 4.0 -3.7 -3.5 -3.1 2.7 2,3 VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP 1 IN STRESS PERIOD 1 SIERRA S~ree~ On nitrates, drinking water, and human health Bo. Icc Chandlc,,, ,",'ID, MPH April 1997 Nitrates in the environment The Ear&t's ammspl'..ere is about 78 perce,at nitrogen and contains about three-Fourths of the nitrogen available in the enviromnent. Most oF this nitrogen is in the 2k~a of elemental Ntrogen g~, bm eomro~d~ of nitrogen ~d oxygen also are present. Some ofthe~e eompotmds ~e produced by chemical reactions in the atmosphere, and a substantial amount are rele~ed into the a~osphere ~m tSe combustion o[k~ssil file!, such as coal and gasoline. Nitrogen compounds in the a~osphere undergo transfi~nnations that eventually ~eave the nitrogen in the fom~ uf nitrate. Ni~me gan dis:mlve in rainwater or sllow and then can reach streruns or groand wares in runoff er seebqge. Naturally occurring mtrates are a major i"actor in pkmr growth, They are absorbed by growing pI~ts ,'md trader normal conditions are metabolized rapidly to produce protein. Although nitrate occurs naturally in dritzk/ng water, elevated levels in groundwater may result from human activities such as overuse ofehemica! fertilizers and improper disposal of human and animal ',¥astes. These Fertilizers ,u'~d ,,,,nates are sourers O£nitrogen-containing compotmds '.',hlch are convened to n/trates in tile soil. Tho dry,' t;:rtilizors ammouium scl/karo trod an-~mcnium nitrate, tbr exmno e have a n troaen content et'ql and 13 n', , nr rt'.qn~.plit'~d .... h;l~. t._ _,:,.~ ,I ...... ' ' ' I femhzer. ~mhydrous ammoma, has :..t nm-agra Content of g2 percent. I Surveys ill midwesl:cm a~%ulmral sratgs such as Iowa, Kansas, attd South. Dakota ha,,e shown that 25% or more of private ,',elis exceed the &lnkln,~ v, ater standard (,! 0 ppm) tar nitrate nitrooen In Nebraska, 17% ofdomes'c~.c v, ell,_, ,md 14% o£pt~bhc ~upply ~',.ells ex"ced-tbs standard.~ The movement ot'contmnin,'mta in groundwater is a aomplex process inlluenced by marly £actors; some of these ~e d~e amount, size. and solubilin.' of the contaminant; the physical, chemical, and microbial character of the soil az:d rock; nature o£ o~ erlying vegetation; the depth of g~oundwater; rate of group, dwater flow; and thc amount ofprecipitatlon. Mierobiologlcal cr~ntau ;chants such as bacteria :md viruses usually travel a short distance through sandy loam or clay, but ma.t trove! large distances tl'a'ough coarse sand and gravel. Chemical comm'nirmnts. being of much smaller size than bacteria or viruses, tend to travel much farther in underground aqult'ers) Once nkrate is t'om~ed, its movement Ju soil and its potential t'or contamination el'ground water depend ell sc',eral factors including the soil characteristics, location and characteristics of'the underground '.~ater t'omlations, and climatic conditions. Nitrates are extremely soluble in water and can rnove easib' through sc, il into the drinking water supply. Tho potential tbr ~titrate Comam.h'mtlon ot'drlnking '.,,'ate: also depends on the depth al~d construction of wells. 8cc,tu_e'" '; n t 'ares move. with the flow of groundwater, the source mav. be located at considerable distance From d~e well. In n'n'my cases, the time needed to,' nitrate to pass through the soil into groundwater is difficult to pre&ct due to many vanables mc!udmg apphcatton rate, the soil ~'pe, and the depth to the water table.'~ Identifying the source ofrdtrates or ct ~er chem'caI cont~u:finmus for au individual well is often x,ery difficult; comprehensive hydrogeological stadles ~md monitoring wells to trace the mlgralion of the contmnlnant N thc grom~dwater may be necessaO', because ~trates ;md other chemicals may travel great dist~ces in tlndc~vatet' aquifers mad gronndwater contmnlnatlon with nitrates or ofl~er chemicals may pcrslst for decades or longer.6 Human tlilraie intake Nitrate is a nora:al component off the human diet. Tho major sourc~ 5'f rfitrarcs taken into the hum;m body is usually/bcd rather than water. Nitrate is present in all planls; v,egetables ~=e', a major source of Ntrale in thc diet. Over 85% of nitrate intake in a U'pical adult diet comes fi'om the natural p~trate content of vegetables. Celet% potatoes, lo,lee, mekms, cabbage, spinach, and many of the roo~ vegetables cootribute }3olh nitrate~ and nitrites to thc dict.~ There has been no significant upward ~rend in the ~trate content of vegetables to parallel the substantial increases that have occurred in r~rtilizer t~sage. Other major dietao' sources of nitrate are food-stuffs such ms cured mcat products and certaln types of cheese to which nitrate (or nitrite) has been added ~ a ct~ing agent or preservative,s The contribntion £rom drimking ,aster is usually quite small (3% or less) unless tine water supply eonlalns nitrates iu elevated concentrations. Persoas who drink wuter with l0 ppm nitrate nitrogen have on average re'ice fi'~o nizrare intak~ of those drinking nitrate-free walcr; at 20 ppm, dail.': nitrate intake h:creases approximately tis'cc-fold.° Where drinkh'tg water is contaminated to a level of 50 mg,'l (5 times the EPA Mi.txin'mm ConlaminaI'x Level), it may supply as much as haI£of the total daily nitrate intake.I° Infants in the first ge'v montlls usua{ly consume few vegetables; their primary, source of nitrate is from v.?ater us,ed h~ the prepm'ation of formula. Hunltm breast cnilk is not a significant source of nitrate to breast feeding infants. Nitrate toxicity The toxicity oPnltrate is due primarily to its conversion to nitrite; at,rite oxidizes the Fe(:-2) form of iron itl hemoglobin, tile rnolecule in the red blood cell which distributes oxygen to thc body's cells, to the Fo('+3) state. This compound--methcmoglobin--does act bind oxygen, resulting in reduced oxygen rrm:sport from lungs to tissues. Low levels ofmethcnmglobi:: occttr in nom~al individuals. Concentrations abot'¢ 10% methemoglobin may cause a bluish color to skin and lips. while values above 25% lead to weakness, rapid pulse and tachypnea. Untreated, severe methemoglobinemia can result in brgi:: darnage; deatl, may occur if t:acthemoglol.'fin values exceed 50-60%. The lmmau health risk of greatest concern ~br nitrales is methc~'noglobincrnia tm'tong infants. Conversion of nitrate to nitrite is mostly mediated by bacteria in tile gastrointestinal system. Consequently, the risk oI'me~hen:oglobincmia fi'om ingest'cfi of n'trate depends not o fly > ~ the dose or' nitrate, but also on the rmmber and type o{'vnteric bacteria, Conversiotl of t~itrutc to ntt.nr,; may occur in the stomach if the pll of the gastric fluid is su£ficiet:ttly high (above plI 5) to evidence by which nitrate exposure has been associated with an incre~ed cancer risk is derived fi.om correlational ~n d'es tvh~ch, by tl~eir nature, provide only weak evidence. At the present time, nitrate exposure in drinking water catmut be implicated or excluded as a causati,/~: factor for certain types et cancer.' Animal data has nt~t sho~q~ evidence ,:,t·bi~% defects or malfon~:aions ariributabk to nitrate or nitrite ingeslion, Adverse :mimal reproductive e~Yccts in the fo~ of ~cre~ed ~ktal loss have been rep .)~xed o fly 5] doses that were 1,000 times and higher th~ the estimated humrm intro. The results ofepidemiological s~dies to date are c~ml~adictt ry ~ mc0nclus~ve. At the present time, there is no evidence to show that I:uman exposure to nitrates pr~duces adverse reproduc:ive e~ccts or congenital ' .. , ~2. 2~ 2~ :~ maJtonnatams. , Si. lin ma r~,': l. Nitrates occur naturally in air, soil, plants, and groundwater. 2. Elevated rliwtte levels in gtotmd~vater may bc the result of human activilics such as overuse o£c~:e:nical ;~r~ilizcrs and improper disposal of htm~al~ and anin,,aI wastes· 3. l'he delineation of the SOurces of nitrates in groundwater is etlon difficolt, because: · mtratcs are small molecules which are hi,,tllv soluble ill Water. · mtrates may move great d[sta,,:ccs fi'om theh' point of entry into an underground aq~.lifer. . n/trams eontamlnation in underground aquifers r:aay persist for decades. 4. Mcthemoglobkuemia in young infants is thc primary human health Esk posed bv consumption of nkra[e-contaminated water. This dose-dependent outcome has'been observed only mnong .: ming i~g'ants who cm]sumed water containing more tha,q 10 mg/l nitrate nitrogen. 5. Consumption el'water with less than !0 mg/l nitrate nitrogen poses no identified health risk for humm~s of an;.' age. ~ Holmes T, JenSea EL Conway JB. Nitrate coniamlnatlon of dnmo~tie pc, table ~ater ~uppli~,. a ~ochl problem? A meric~ Jo~al et' Preventive Medicine 19.~; 1:~ [-7. Nebr~ka Mt~al Journal 1993; 7-10, ' ~'oss DC. Hallbe~ GR, Brtlncr DJ(. et al. The citrate concentration of private welt water in lowm Amcricun Jo~ of~bl/c Health 1993: 83:270-2. ~ Salvage ~ ~. ffo~anmeahd Engineering aud Sunkarion, 4dl ed. New York. Wiley-lntersclcncc, 1992:218~284. ~ No~es T, Jensea ~, Conway ~. Nitrate cuntamlnatio fdomestic, otable wa Ame~c~ Jo~l of Prcvcmive Medicine 1985: IL. 1-;. P ~er supplies: a social preblem? 0 Salvam IE ~. En~SronmentM Engmecrmg and Sanitation, 4th ed, New York, ~.~ey4ntcrsc~u~ce, 9~ 2'2 8-284. [lo~e~ F, Jcnsen ~., Co~lway ~. Nitrate conlamiflation ~fdomcsrlg potable Ame~c~ Jou~ .~f Preventive Nlcdicine 1985 h 51.7, ~a~er suppl~=s: a social problem? * Chih'em C ~sk~p tl. ca~g,I C, el ~1. A 5Urve?' of dtetm5 mlrate m well,water users. Epidemiology I984: .... '" ~ We~nhurgcr DD. Panel discassion: tlcaltk cooucquenc~s: panel consensas of potcalial health consequences of elevated nitre ~cvels. Nebraska Medical Journal; 993; I 1-2 Clukers C, Ins~p H. Caygil C, et al, .'~ smw'ey of dietaD, uhratc in well-water users. !ntere~alional u He'es T, J~m¢~n EL, Conway ~. NJ[rate ;ontan~{llatkm ofdnmesdc potable ,va~er .~ehe~ Jou~ of Prevemi~e Medicine ! 985; 1:5; 12 Holmea T, Jen3en ~, Conway JB. Nih'are contalllinario~l of do Iie~tic pot; b e water supplies: a socfM 2roblem'~ .&nlt'~c~ Jou~ of Preventive Medidnc t ,-, .q t~ Wekenbu~cr DD, P~e] di~cassiml: bculfl~ eonsequencc~ pine/consenius ofpotenda} health elevated nitrate 7cveJs. Nebraska Metrical Journal 1993:1 14 CFaun OF, Grea~wzse DG, Gunderson DIq, Med~acmoglo'bin levels in young childre~ cons~llling high nitrate water in the Unk~ States. [n[emational Journal of Epidemiology 198l; 10., 09-~ ,. - ~ We~eabmg~, DD. Pene! discussion: heallh ¢on.qequences: panel COnsellsus of potential heaith consequcrtces of ekvared nimte 7eveN. Nebraska Medical Journal 1993; ~ ~oss BC, Hallb¢~ G~ Brunet DK er at. ~e nitrate cm~lamination of private well waler in Ionia. American Journal of Public [{¢alLh 1993; 83: 270-2. ~r Wclseub~ger DD. PnrendaJ heallh con.~equcnces of ground-water centamination by Illtrates hi Nebraska, Nebras~ Medi~ Jomal 1991; 7- a Fan .~M, Wilthite CC. Beak SA. Evaluation oflhe re[rate d ' o r¢nM% ~uter standard ~ith relErence to methemoglobNt~ia and potential reproductive toxicity. Regulatol? Toxicology and Pham~acology 1987;7:135-148. · ~ Tsezou A. ~m'ou-Tzdi S Gouts/offs D. e~ al [IJgh nitrate cont¢nt ~ driving water: cytogenetic exposed chil~en..Mchives o¢~nvironmetnal ileakh i996;51:,158,61. ~o KIein~ans JCS..41N~ng H J, Mare A. et a N ware cm to ninadon ofdrmki ~o war : ' in aum~ popul~ons. Envh'ot~,cnta[ tleal:h Perspectives 1991; 94'18~-~3 er evaluation ofgcnotoxic risk Weisenburger DD. P~n¢l discussion: h~aith consequences: panel ¢ollscnsas of potential health consequences et' elevated ~Wdte Ievol~. ~ebrmska Mcdmal ~uumal 1993; I ~-2 Wei~enburger DD. ~el disuus~iot~: health consequc cua: patlel coll$cnsu$ of potential health consequenc=~ of elevated n rote level~. Nebraska Medical Jou~al !993; 11-2 Fan A.M, ~t 'llhite CC, ~ouk SA, Evaluatio~ of me Illtrate dr[nki;lg ~arer stalldard ~ith rel~renc= mcthemo~obinem~a an~ potential reproduc:ivc mxickv, Regulamq., Foxicology ~d PhamaacoloD. "a 9%uj~jce and reproductive and developmental to~ciw Renu a~', ~ .,,, .... mgl; WATER RESOURCES RESEARCH, VOL. 33, NO. 11, PAGES 2579-2590 NOVEMBER 1997 Relating nutrient discharges from watersheds to land use and streamflow variability Thomas E. Jordan, David L. Correll, and Donald E. Weller Smlthsonian Environmental Research Center, Edgewater, Ma~,land Abstract. During a 1-year period we measured discharges of water, suspended solids, and nutrients from 27 watersheds having differing proportions of cropland in the Piedmont and Coastal Plain provinces of the Chesapeake Bay drainage. Annual flow-weighted mean concentrations of nitrate and organic N and C in stream water correlated with the relative proportions of base flow and storm flow. As the proportion of base flow increased, the concentration of nitrate increased and the concentrations of organic N and C decreased. This suggests that discharge of nitrate is promoted by groundwater flow but discharges of organic N and C are promoted by surface runoff. Concentrations of N species also increased as the proportion of cropland increased. We developed a statistical model that predicts concentrations of N species from the proportions of cropland and base flow. P concentrations did not correlate with cropland or base flow but correlated with the concentration of suspended solids, which differed among watersheds. 1. Introduction Over the past few decades, riverine discharges of plant nu- trients have increased in response to enormous increases in anthropogenic inputs. For example, increases in discharges of nitrogen and phosphorus from the Mississippi basin have been linked to the respective twenty'fold and fourfold increases in applications of nitrogen and phosphorus fertilizers since 1940 [Turner and Rabalais, I991]. Discharge of nitrogen from rivers throughout the United States and Europe correlates with the sum of anthropogenic inputs from fertilizer application, culti- vation of nitrogen-fixing crops, net imports of agricultural products, and fossil fuel combustion [Jordan and ~Veller, 1996; Howarth et al., 1996]. Because much of the anthropogenic nutrient input is related to agriculture, watersheds with greater proportions of agricultural land tend to discharge greater amounts of nitrogen [Hill, 1978; Neill, 1989; Mason et al., 1990], phosphorus [Dillon and Kirchner, 1975], or both nutrients [Rekoioinen, 1990; Correll et al., 1992; Nearing et al., 1993; Kronvang et al., 1995]. Consequently, agricultural land use is an important factor in many empirical models of nutrient dis- charge [Osborne and Wiley, 1988; Hunsaker and Levine, !995; Johnson et al., 1997]. Nutrient discharges are also influenced by mechanisms of water flow from the land. Rapid surface flows of water that enhance erosion are likely to enhance transport of phosphorus, which is mostly bound to particulate matter [Dillon and Kirch- net, 1975; Grobler and Silberbauer, 1985]. In contrast, rapid inflltration and groundwater flows are likely to enhance trans- port of nitrate, which is very soluble and easily leached from the soil. Groundwater contamination with nitrate is more com- mon beneath well-drained soils [e.g., Spalding and Exner, .1993], while consumption of nitrate by denitriflcution is greater tn poorly drained soils [Gambrell et al., I975]. Discharge of nitrate in streams has been related to a groundwater delivery This paper is not subject to U.S. copyright. Published in I997 by the American Geophysical Union. _Paper number 97WR02005. 0043-1397/97/97WR-02005509.00 factor that reflects the leaching potential of soils in the water- sheds and the hydraulic conductivity of the aquifers [Brenner and Mondok, I995]. Understanding the factors that influence nutrient discharge is critical to understanding the eutrophication of lakes, estu- aries, and coastal waters, which has been accelerated through- out the world by amhropogenic nutrient inputs [Nixon, i995]. In the Chesapeake Bay, one of the world's largest estuaries, anthropogenic increases in watershed inputs of both nitrogen and phosphorus have led to excessive plankton production [Malone et al., 1986, 1988; Boynton et al., 1982; Correll, 1987; Jordan et al., 1991a, b; Fisher et aL, 1992; Gallegos et al., 1992] that has contributed to the demise of submerged aquatic veg- etation [Kemp et al., 1983] and an increase in the extent of hypoxic waters [Taft et al., 1980; Officer et al., 1984]. Excessive nitrogen and phosphorus inputs also lead to seasonal depletion of dissolved silica and result in altered phytoplankton produc- tion and species composition in the mid to lower bay ID'Ella et al., 1983; Anderson, 1986; Conley and Malone, 1992]. The Ches- apeake Bay watershed contributes approximately two thirds of the nitrogen, one quarter of the phosphorus, and all of the silica inputs to Chesapeake Bay [Correll, 1987]. Agriculture is the main source of nitrogen discharge from the watershed of Chesapeake Bay [e.g., Fisher and Oppenheimer, 1991; Jaworsla' et al., 1992]. The 178,000-kin2 watershed of Chesapeake Bay extends over three physiographic provinces, the Coastal Plain, the Pied- mont, and the Appalachian, which differ in land use patterns, topography, hydrology, and geology. About 18% of the water- shed, including all of the land adiacent to the shoreline, is in the Coastal Plain [National Center for Resource Innovation (NCRI), 1982], which is low-lying land consisting of layers of unconsolidated marine sediments with differing grain sizes and permeabilities. The Coastal Plain includes a variety of land uses. A/ong the eastern shore of the Chesapeake are areas where production of corn and soybeans matches that of the central U.S. corn belt [Thomas and Gilliam, 1977]. Farther south on the Delmarva Peninsula, one of the largest concen- trations of poultry farms in the United States produces a very 2579 2586 JORDAN ET AL.: NUTRIENT DISCHARGE FROM WATERSHEDS o. Coastal PI .. Figure 9, Annual flow-weighted mcan concentration of total suspended solids for watersheds in the Piedmont [Jordan et al., 1997b] and Coastal Plain [Jordan et al., 1997a1. The regrassion linc is shown for Coastal Plain data (p < 0.001, r2 = 0.90). and the base flow index explain 54-93% of the variance in concentrations of different forms of N and organic C (Tablas 2 and 3). Thus nonpoint source discharges of these nutrients from Piedmont and Coastal Plain watersheds other than those we studied could be predicted from measurements of water flow rates [e.g., Darling, 1962], the base flow index, and the extent of cropland. Unfortunately, the extent of cropland is often poorly known because land use inventories that are based on remote sensing are poor at distinguishing cropland from grassland [e.g., Environmental Monitoring and Assessment Program, 1994]. Ground-based observations, such as we used to identify cropland, are practical only for relatively small ar- eas. For areas the size of counties or larger, agricultural sta- tistics for counties [e.g., Bureau of the Census, 1993] can pro- vide measurements of cropland areas, but there is clearly a need for more accurate mapping of cropland. Characteristic base flow indices for different regions can be calculated from data on daily stream flow, but only for watersheds without lakes or reservoirs that would affect the evenness of stream flow. In addition, the predictive ability of our models should be verified by comparing predicted and measured nutrient con- centrations for other watersheds. Annual nutrient discharge can be calculated by multiplying the predicted annual flow-weighted mean concentrations by the annual water flow. Water flow during our 1-year studywas below the long-term mean flow for streams near our water- sheds, probably because rainfall was below average during the study [Jordan et al., 1997a, b; Darling, 1962]. Also, water flow per hectare decreased as area decreased for Coastal Plain watersheds of less than 700 ha [Jordan et al., 1997a]. Therefore to obtain an estimate of nutrient discharge that is representa- tive of large basins during average rainfall conditions, it is better to multiply concentrations by long-term regional mean water flows rather than by water flows measured from our study watersheds. Regional mean water flows were about 45 cm yr-~ for inner Coastal Plain watersheds, 35 cm yr-~ for central and outer Coastal Plain watersheds, and 42 cm yr-~ for Piedmont watersheds [Jordan et al., 1997a, b; Darling, 1962]. Differences in water flows affect nutrient discharges, but these differences are small in comparison with the differences in nutrient concentrations among watersheds. However, future studies would be needed to confirm that differences in annual water flow do not cause significant differences in annual mean nument concentrations. In addition to predicting nutrient concentrations, our mod- els also suggest the underlying mechanisms that control nutri- . ent discharges. Increases in N discharge with increasing pro- portions of cropland have commonly been observed [e.g., Omernik, 1976; Beaulac and Reckhow, 1982; Rekolainen, 1990; Frink, 1991; Correll et al., 1992] and are probably related to N applications to cropland. However, the correlations with base flow index suggest that the way water flows over and through the soil also affects discharges. Water flow from a watershed having a high base flow index is predominantly through groundwater emerging in streams, while flow from a watershed having a low base flow index is predominantly surface runoff or shallow subsurface flow. Thus the increase in concentrations of organic N and C with decrease in base flow index suggests that these organic nutrients are transported mainly in surface run- off and shallow subsurface flow. Conversely, the increase in NO3 concentration with increase in base flow index suggests that nitrate is transported mainly in groundwater flow. These deductions are consistent with other findings. Gambrell et al. [1975] compared N fluxes in poorly drained and moderately well drained cornfield soils and found that organic N was mainly transported in surface runoff, which was higher for poorly drained than for well-drained soils. They also found Table 4. Annual Flow-Weighted Mean Concentrations of Dissolved Silica, Total N, and Total P, and Atomic N: P Ratios in Discharges From the Study Watersheds Silica-Si, Total N, Total P, Atomic Watershed mg L-~ mg L-t mg L-~ N:P Inner Coastal Plain (Rhode River) 101 6.0 1.0 0.35 6.4 102 5.4 1.5 0.47 7. I I03 9.9 0.94 0.73 2.8 108 9.5 1.7 0.32 11 I09 9.4 3.6 0.90 8.9 110 5.2 0.48 0.10 i1 111 '" 0.25 0.068 8.0 Inner Coastal Plain (Delmarva) 301 3.0 0.19 0.021 21 302 4.0 1.6 0.059 62 303 4.4 LI 0.10 23 Central Coastal Plain 304 6.8 2.6 0.17 34 305 6.0 2.8 0.19 33 306 6.8 3.1 0.36 19 310 6.1 4.1 0.24 38 Outer Coastal Plain 307 3.4 0.52 0.021 55 308 6.5 3.8 0.044 190 309 7.8 2.6 0.046 120 Piedmont 401 3.4 0.95 0.075 28 402 4.6 3.4 0.095 79 403 2.6 4.3 0.047 200 404 2.6 8.4 0.15 130 405 2.6 3.8 0.090 94 406 3.0 2.4 0.10 51 407 5.2 3.1 0.073 94 408 2.8 6.2 0.16 85 409 1.9 3.5 0.091 85 410 2.7 4.7 0.28 36 From Jordan et al. [1997a, bi. JORDAN ET AL.: NUTRIENT DISCHARGE FROM WATERSHEDS 2587 Fertilizer Denitriftcatlon N20 Surface R · I I II · I ~"~a~ll -- =.._OrganloN, C DenRrificatlon - ...... Figure 10. Conceptual model of the transport of NO~ via groundwater flow, and organic N and C ~a surface runoff. much greater transport of NO3 through subsurface drainage in the well-drained soils and hypothesized that more NO3 was lost through denitrification in the poorly drained soils. Simi- larly, Groffman et al. [1992] found that denitrification rates in forest soils are greater in finer-textured soils, and Dillon et al. [1991] found that organic N discharge from forested water. sheds increases as the proportion of "quick flow" increases. Brenner and Mondok [1995] found that NO3 discharge rate was greater for watersheds having soil and aquifer characteristics favoring infiltration and subsurface flow. Kronvang et al. [1995] derived a multiple-regression model to predict nutrient dis- charges from several watershed characteristics including the proportions of arable land and the proportions of soil t3~pes of different permeabilitias. It is surprising that the discharges of suspended solids and P were not related to the base flow index. One would expect that watersheds with a predominance of surface runoff would dis- charge greater amounts of suspended solids and associated P. Greater predominance of surface runoff should correlate with lower base flow indices, although some nonbase flow may be shallow subsurface flow. Transport of suspended solids may be more to related the erodibiilty of soil particles than to the proportion of surface runoff. P transport would be affected both by the transport and by the P content of the suspended solids. Other studies report that discharges of P are affected by the geochemistry of the soils in the watershed [Dillon and Kirchner, 1975; Grobler and Silberbauer, 1985; Rekolainen, i990; Vighi et al., 1991]. Differences in the P geochemistry of soils in different provinces could account for the differences we observed in the relationships between concentrations of sus- pended solids and total P (Figure 9). The lack of correlation between base flow and suspended solids indicates that the correlations of between base flow and organic N and C are not due to an increase in transport of particulate matter with increased surface runoff. This is con- sistent with previous findings that most of the organic N and C is in dissolved form. Separate analyses of dissolved and partic- ulate fractions in discharges from our watersheds indicate that dissolved organic N and C averaged 70-80% of the total or- ganic N and C, except in the Rhode River watersheds where dissolved organic N averaged 38% of the total organic N and dissolved organic C averaged 50% of the total organic C [Jor- dan et al., 1997a, b]. Even after accounting for the proportion of cropland and the base flow index, there is still a systematic difference in NO3 discharge between Piedmont and Coastal Plain watersheds. Coastal Plain watersheds discharge less NO3 per hectare than Piedmont watersheds having similar proportions of cropland and similar base flow indices (Figure 5). The difference is apparently not due to differences in anthropogenic N inpuls, because inputs of N per hectare of cropland are about the same for most of the watersheds we studied [Jordan et al., 1997a, bi. However, NO3 discharges from Coastal Plain water- sheds may be reduced by uptake of NO3 in riparian forests. On the Coastal Plain, agricultural fields are typically Iocated on welI-drained uplands above poorly drained ripar/an forests [Gilliam and Skaggs, 1988; Correll. 1991] that can retain 70- 90% of the total N inputs entering mainly as NO3 in subsurface discharges from adjacent cropland [Lowrance et al., 1984, 1985; Peteqohn and Correll, 1984;.Jacobs and Gilliam, 1985; Pete~john and Correll, 1986; Jordan et al., 1993]. NO3 retention in r/par/an forests may be due to either plant uptake or denitfification [Lowrance et al., 1984; Peterjohn and Correll, 1984; Jacobs and Gilliam, I985; Lowrance, 1992; Haycock and Pinay, 1993]. It is not known whether riparian forests in the Piedmont can inter- cept NO3 as effectively as can those in the Coastal Plain [Low- rance et al., I995]. Groundwater flow patterns in the Piedmont may not be as favorable as those in the Coastal Plain for uptake in riparian zones. In the Coastal Plain, Iayers of imper- meable sediment can force groundwater flow near the soil surface in riparian zones, enhancing the potential for denitri- fication and N uptake by plants [Jordan et al., 1993]. In the Piedmont, groundwater may flow deeper, passing through frac- tured regotith as much as 30 m beneath the riparian soils [?avich et al., 1989] to emerge in the stream, with less possi- bility of NO3 intemeption within the riparian zone. Also, in the Piedmont, less of the forest is riparian than in the Coastal Plain. In fact, much of the forest in our Piedmont watersheds JORDAN ET AL.: NUTRIENT DISCHARGE FROM WATERSHEDS is on hilltops, where the soil is too dry and rocky for crops, and much of the riparian zone is used for pasture. Characteristics of riparian zones have been used as predic- tive variables in some statistical models of watershed discharge [Omemik et al., 1981; Osborne and Wiley, 1988; Hunsaker and Levine, 1995; Johnson et al., 1997}. However, in some cases, there was no significant relationship between nutrient dis- charge and riparian zone characteristics [Omemik et al., 1981; Hunsaker and Levine, 1995]. This may reflect variability in the nutrient trapping efficiency of riparian zones. The N, P, dissolved Si, and TOC discharged by watersheds contribute to eutrophication of receiving waters. N and P were discharged in widely different proportions by different types of watersheds, but for all except the Rhode River watersheds, the atomic N:P ratios discharged were higher than 16 (Table 4), the typical N:P ratio in phytoplankton biomass [Redfield, i958]. This suggests that the discharges would promote P lim- itation of phytoplankton growth in the receiving waters. High atomic N:P ratios have also been found in discharges from major tributaries to the Chesapeake Bay, the Potomac River (N: P = 23 [Jaworski et al., 1992]) and the Susquehanna River (N: P = 66 [Ott et al., 1991]). Dissolved silica concentrations in discharges from the Coastal Plain were generally higher than in discharges from : ~e Piedmont (Table 4), suggesting that Coastal Plain dis, arges could support more diatom growth than could Piedmont discharges. Increase in N discharge with increase in the proportion of cropland in the watershed probably results from anthropogenic inputs of N to croplands. However, our study suggests that hydrological properties of the watershed strongly influence the proportion of the anthropogenic input that is discharged (Fig- ure 10). We hypothesize that the main path of N discharge is via downward leaching of NO3 out of the rooting zone and into groundwater that Iater emerges in streams. Thus in watersheds having higher base flow indices, indicating greater predomi- nance of infiltration over surface runoff, more NO3 will be leached from the surface soils and carried to the stream in shallow groundwater. In watersheds having lower base flow indices, indicating less infiltration, more NO3 will be held in the surface soils, where it can be taken up by plants or deni- trifled. We further hypothesize that organic N and C are less prone to leaching than NO3 and thus are transported more effectively by surface runoff, which predominates in water- sheds with low base flow indices. NO3 transport through groundwater to streams may be reduced by interception in riparian forests, especially in the Coastal Plain. Our study suggests that the partitioning of water flow between surface runoff and shallow groundwater is of overriding importance in determining nutrient discharges. Moreover, this partitioning is well characterized by a very simple integrative measurement, the base flow index. Acknowledgments. Most of the field work for this study was carried out by Jim Duls and Jay Wolowitz. Nancy Goff supervised the chemical analyses and assisted Michelle Coffee with land use analysis. We thank Bente Clausen of Canterbury University in Christchurch, New Zeal- and, for introducing us to the base flow index. Carolyn T. Hunsaker, of Oak Ridge National Laboratory, and David K. Muetler, of the U.S. Geological Survey, provided very helpful reviews. Funding was pro- vided by NSF grants BSR-89-05219, DEB-92-06811, and DEB-93- 17968. References American Public Health Association (APl-IA), Standard Methods for the Examination of Water and Wastewater, 17th ed., New York, 1989. Anderson, G. F., Silica, diatoms and a freshwater productivity maxi- mum in Atlantic Coastal Plain estuaries, Chesapeake Bay, Estuarine Coastal Shelf Sci., 22, 183-198, 1986. Beaulac, M. N., and K. H. Reckhow, An examination of land u~e2 nutrient export relationships, Water Resoun Bull., 18, I013-1022, 1982. Boynton, W. R., W. M. Kemp, and C. W. Keefe, A comparative analysis of nutrients and other factors influencing estuarine phyto- plankton production, in Estuarine Comparisons, edited by V. Kennedy, pp, 69-90, Academic, San Diego, Califi, I982. Brenner, F. J., and J. J. Mondok, Nonpoim source pollution potential in an agricultural watershed in northwestern Pennsylvania, Water Resour. Bull., 31, 1101-1112, 1995. Bureau of the Census, 1987 Censta of Agriculture, vol. 1, Geographic Area Series [CD-ROM], Data User Serv. Div., U.S. Dep. of Corn- mcr., Washington, D. C., 1993. Conley, D. J., and T. C. Malone, Annual cycle of dissolved silicate in Chesapeake Bay: Implications for the production and fate of phy- toplankton biomass, Mar. Ecol. Frog. Ser., 81, 121-I28, i992. Correll, D. L., Overview of the Rhode River watershed program, in Watershed Reseamh in Eastem North America, edited by D. L. Cor- rell, pp. 105-I24, Smithson. Inst. Press, Washington, D. C., 1977. Correll, D. L., Nutrient mass balances for the watershed, headwaters intertidaI zone. and basin of the Rhode River estua~, Limnol. Oceanogr., 26, II42-1149, 1981. Con'ell, D. L., Nutrients in Chesapeake Bay, in ContaminantProblem~ and Management of Living Chesapeake Bay Resources, edited by S. K. Majumdar, L. W. Hall Jr., and H. M. Austin, pp. 298-319, Pa. Aced. of Sci., Philadelphia, 1987, Correll, D. L., Human impact on the functioning of landscape bound- aries, in The Role of Landscape Botmda~qes in the Management and Restoration of Changing Environments, edited by M. M. Holland, P. J. Risser, and R. J. Naiman, pp. 90-109, Chapman and Hall, New York, 1991. Correll, D. L., T. E. Jordan, and D. E. Wefier, Nutrient flux in a landscape: Effects of coastal Iand use and terrestrial community mosaic on nutrient transport to coastal waters, Estuaries, 15, 431- 442, 1992. Darling, J. M., Maryland Streamflow Characteristics, Dep. Geology Mines Water Resour. Bull., 25, 136 pp., 1962. D'Elia, C. F., D. M. Nelson, and W, R. Boynton, Chesapeake Bay nutrient and plankton dynamics, III, The annual cycle of dissolved silicon, Geochim. Cosmochim. Acta, 47, 1945-1955, 1983. Dillon, P. J., and W. B. IGrehner, The effects of geology and land use on the export of phosphorus from watersheds, Water Res., 9, 135- 148, 1975. Dillon, P. J., L. A. Molot, and W. A. Scheider, Phosphorus and nitro- gen export from forested stream catchments in central Ontario, J. Environ. Qual., 20, 857-864, 1991. Environmental Mapping and Assessment Program (EMAP), Chesa- peake Bay Watershed Pilot Project, EMAP Cent., U.S. Environ. Prot. Agency, Research Triangle Park, N. C., 1994. Fisher, D. C., and M. Oppenheimer, Atmospheric nitrogen deposition and the Chesapeake Bay estuary, Ambio, 20, 102-108, 1991. Fisher, T. R., E. R. Peele, J. W. Ammerman, and L. W. Harding Jr., Nutrient limitation of phytoplankton in Chesapeake Bay, Mar. Ecol. Prog. Ser., 82, 51-64, 1992. Frink, C. R., Estimating nutrient exports to estuaries, J. Environ. Qual., 20, 717-724, 1991. Gallegos, C. L., T. E. Jordan, and D. L. Corrall, Event-scale response of phytoplankton to watershed inputs in a subestuary: Timing, mag- nitude and location of blooms, Limnol. Oceanogr,, 37, 813-828, 1992. Gambrell, R. P., J. W. Gilliam, and S. B. Weed, Nitrogen losses from softs of the North Carolina Coastal Plain, J. Environ. Qual., 4, 317- 322, 1975. Gaudy, A. F., and M, Ramanathan, A colorimetric method for deter- mining chemicaI oxygen demand, J~ Water Po#ut. Control Fed., 36, I479-1487, 1964. Gilliam, J. W., and R. W. Skaggs, Nutrient and sediment removal in wetland buffers, in proceedings of the National Wetland Symposium: Wetland Hydrology, edited by J. A. Kusler and G. Brooks, pp. 174- 177, Assoc. of State Wetland Managers, Berme, N. Y., I988. JORDAN ET AL.: NUTRIENT DISCHARGE FROM WATERSHEDS 2589 Grobler, D. C., and M. J. Silberbauer, The combined effect of geology, phosphate sources and runoff on phosphate export from drainage basins, Water Res., 19, 975-98l, 1985. Groffman, P. M., R. C. Simmons, and A. L Gold, Nitrate dynamics in riparian forests: Microbial studies, J. Environ. Qual., 21, 666-671, 1992. Gustard, A., A. Bullock, and J. M. Dixon, Low Flow Estimation in the United Kingdom, Rep. 108, pp. 19-25, Inst. of Hydrol., Wal0ngford, England, 1992. Haycock, N. E., and G. Piney, Nitrate retention in grass and popular vegetated riparian buffer strips during the winter, Z Environ. Qual., 22, 273-278, 1993. Hill, A. R., Factors affecting the export of nitram-nitrogen from drain- age basins in southern Ontario, Water Res., 12, 1045-1057, 1978. Howarth, R. W., et al., Riverine inputs of nitrogen to the North Atlantic Ocean: Fluxes and human influences, Biogeochemistty, 35, 655-664, 1996. Hunsaker, C. T., and D. A. Levine, Hierarchical approaches to the study of water quality in rivers, BioScience, 45, 193-203, 1995. Hunt, C. B., Natural Regions of the United States and Canada, 725 pp., W. H. Freeman, New York, 1974. Jacobs, T. C.. and J. W, Gilliam, Riparian losses of nitrate from agricultural drainage waters, J. Environ. Qual., 14, 472-478, 1985. Jaworski. N. A., P. M. Groffman, A. A. Keller, and J. C. Prager, A watershed nitrogen and phosphorus balance: The upper Potomac River basin, Estuaries, 15, 83-95, I992. Johnson, L. B., C. Richards, G. E. Host, and J. W. Arthur, Landscape influences on water chemistry in Midwestern stream ecosystems, Freshw. Biol,, 37, 193-208, 1997, Jordan, T. E., and D. E. Wefier, Human contributions to terrestrial nitrogen flux, BioScience, 46, 655-664, 1996. Jordan, T. E., D. L. Correll, W. T. Peterjohn, and D. E. Weller, Nutrient flux in a landscape: The Rhode River watershed and re- ceiving waters, in Watershed Researrh Perspectives, edited by D. L. Corretl, pp. 57-76, Smithson. Inst. Press, Washington, D. C., 19864. Jordan, T. E., J. W. Pierce, and D. L. Corre[[, Flux of particulate matter in the tidaI marshes and subtidal shaflows of the Rhode River estuary, Estuaries, 9, 310-319, I986b. Jordan, T. E., D. L. Correll, J. Miklas. and D. E. Weller, Nutrients and chlorophyll at the interface of a watershed and an estuary, Lbnnol. Oceanogr,, 36, 251-267, 19914. Jordan, T. E., D. L, Correll, J. Miklas, and D. E. Weller, Long-term trends in estuarine nutrients and chlorophyll, and short-term effects of variation in watershed discharge, Man Ecol. Prog. Ser., 75, 121- 132, 1991b. Jordan, T. E., D. L. Correll, and D. E. Wefler, Nutrient interception by a riparian forest receiving inputs from cropland, J. Environ. QuaL, 22, 467-473, 1993. Jordan, T. E., D. L. CorrelI, and D. E. Weger. Effects of agriculture on discharges of nutrients from Coastal Plain watersheds of Chesa- peake Bay, J. Environ. Qual., 26, 836-848, 19974. Jordan, T. E., D. L. Correll, and D. E. Weller, Nonpoint source discharges of nutrients from Piedmont watersheds of Chesapeake Bay, J~ Am. Water Resou~ Assoc., 33, 631-645, 1997b. Kemp, W. M., R. R; Twilly, J. C. Stevenson, W. R. Boynton, and J. C. Means, The decline of submerged vascular plants in upper Chesa- peake Bay: Summary of results concerning possible causes, Mar. Technol. Soc. J., 17, 78-89, 1983. King, E. J., The colorimetric determination of phosphorus, Biochem. J., 26, 292-297, 1932. Kronvang, B., R. Grant, S. E. Larsen, L. M. Svendsen, and P. Kris- tensen, Non-point-source nutrient losses to the aquatic environment in Denmark: Impact of agriculture, Mar. Freshw. Rea'., 46, 167-i77, 1995. Lowrance, R., Groundwater nitrate and denltrification in a coastal plain riparian forest, Z Environ. Qual., 21, 401-405, 1992. Lowrance, R., R. Todd, J. Fail, O. Hendrickson, R. Leonard, and L. Asmussen. Riparian forests at nutrient filters in agricultural water- sheds, BioScience, 34, 374-377, 1984. Lowrance, R., R. Leonard. and J. Sheridan. Managing riparian eco- systems to control nonpoint pollution, J. Soil Water Conserv., 40, 87-97, [985, Lowrance, R., et al., Water quality functions of riparian forest buffer systems in the Chesapeake Bay watershed, EPA 903-R-95-004. CBP/ TRS 134/95, 67 pp.. U. S. Environmental Protection Agency, Wash- ington, D. C., 1995. Maciolek, J. A., Limnological Organic Analyses by Quantitative Dichro~ mate OxMadon, 61 pp., Bur. of Sport Fish. and Wildlife, U.S. Fish and Wildlife Serv., Washington, D. C., 1962. Malone, T. C., W. M. Kemp, H. W. Ducklow, W. R. Boynton, J. H: Tuttle, and R. B. Jonas, Lateral variation in the production and fate of phytoplankton in a partially stratified estuaty, Man Ecol. Prog. Set, 32, 149-160, 1986. Malone, T. C., L. H. Crocker, S. E. Pike, and B. W. Wendler, Influence of river flow on the dynamics of phytoplankton production in a partially stratified estuary, Mar. Ecol. Prog Ser., 48, 235-249, 1988. Martin, D, F., Marine Chemistry, vol. 1,389 pp., Marcel Dekker, New York, 1972. Mason, J. W., G. D, Wegner, G. I. Quinn, and E. L. Lange, Nutrient loss via groundwater discharge from small watersheds in southwest. ern and south central Wisconsin,J. Soil Water Consere., 45, 327-331, 1990. Mulholland, R. $., G. V. Wilson, and P. M. Jardine, Hydrogeochemical response of a forested watershed to storms: Effects of preferential flow along shallow and deep pathways, WaterResour. Res., 26, 3021- 3036, 1990. Nathan, R. J., and T, A. McMahon, Evaluation of automated tech- niques for base flow and recession analysis, Water Resour. Res., 26, 1465-1473, 1990. National Center for Resource Innovation (NCRI), Major Land Re- source Areas in the Chesapeake Bay Watershed: Aerial Data From the 1982 USDA/SCS National Resource Inventory, Arlington, Va., 1982. Nearing, M, A., R. M. Risse, and L. F. Rogers, Estimating daily nutrient fluxes to a large Piedmont reservoir from limited tributary data, J. Environ, Qual., 22, 666-671, 1993. Neill, M., Nitrate concentrations in river waters in the south-east of Ireland and their relationship with agricultural practice, Water Res., 23, 1339-1355, 1989. Nixon, S. W., Coastal marine eutrophication: A definition, social causes, and future consequences. Ophelia, 4l, 199-219, 1995, Officer, C. B., R. B, Biggs, J. L. Taft, L. E. Cronin, M. A. Tyler, and W. R. Boynton, Chesapeake Bay anoxia: Origin, development, sig- nificance, Science. 223, 22-27, i984. Omernik, J. M., The influence of land use on stream nutrient levels, Publ. 106, U.S. Environ. Prot. Agency, Corvallis, Oreg., 1976. Omernik, J. M., A. R. Abernathy, and L. M. Male, Stream nutrient levels and proximity of agricultural and forest land to streams: Some relationships, Z Soil Water Conserv., 36, 227-231, 1981. Osborne, L. L., and M. J. Wiley, Empirical relationships between land use/cover and stream water quality in an agricultural watershed, Z Environ. ,a4anage., 26, 9-27, 1988. Ott, A. N., C. S. Takita. R. E. Edwards, and S. W. Bollinger. Loads and yields of nutrients and suspended sediment transported in the Sus- quehanna River basin. 1985-89, Pllblication 136, 254 pp., Susque- hanna River Basin Comm., Harrisburg, Pa., 1991, Pavich, M. J., G. W. Leo, S. F. Obermeier, and J. R. Estabrook, Investigations of the characteristics, origin, and residence time of the upland residual mantle of the Piedmont of Fairfax Co., Va., Geol. Sure. Profi Pap., 1352, 58 pp., 1989. Peterjohn, W. T., and D. L. Correll, Nutrient dynamics in an agricul. tural watershed: Observations on the role of a riparian forest, Ecol- ogy, 65, 1466-1475, 1984. Peterjohn, W. T., and D. L. Correfi, The effect of riparian forest on the volume and chemical composition of baseflow in an agricultural watershed, in Watershed Research Perspectives, edited by D. L. Cor- reft, pp. 244-262, Smithson. Inst. Pres& Washington, D. C., 1986. Redfield, A. C., The biological control of chemical factors in the environment, Am. Sci., 46, 205-22I. 1958. Rekolainen, S., Phosphorus and nitrogen load from forest and agri- cultural areas in Finland, Aqua Fenn., 19, 95-107, 1990. Sims, .f.T., and D. C. Wolf, PouItry waste management: Agricultural and environmental issues, Adv. Agron., 52. 1-83, 1994. Spalding, R. F., and M. E. Exner, Occurrence of nitrate in greundwa- ter--A review, Z Em'iron. Qual., 22. 392-402, 1993. Strickland, J. D. H., and T. R. Parsons. A Practical Handbook of Seawater Analysis, 2nd ed., Bull. Fish. Res. Board Can., 165, 81-85, 1972. Taft, J. L., W. R. Taylor, E. O. Hartwig, and R. Loftus, Seasonal oxygen depletion in Chesapeake Bay, Estuaries, 3, 242-247, i980. Thomas, G. W., and L W. Gilliam, Agro-ecosysmms in the U.S.A., Agro Ecoo,stems, 4, 182-243, 1977. TURES Coliform Bacteria and Nitrate Contamination of Wells in Major Soils of lrederick, Mar land Anna Tufhil[, M.S. D.B. Meikle, Ph.D. Michael C.R, Alavanja, Ph.D. ,~1~ An mvestlganon was conducted on the hypothesis that inad- ~- equate septic system construction or placement may cause contamination of wells with coliform bacteria and/or nitrates. Specifically, two predictions were tested: 1. A negative correlation between lot size and coliform bacteria and nitrate contamination will exist in unsewered areas. 2. Coliform bacteria and nitrate contamination will decrease with increasing casing length. The relationship of coliform bacteria and nitrate levels to lot size and casing length was tested for all wells In unsewered areas (~I = 8321 and for wells in 10 soil groups in Frederick County, Maryland. to determine if septic system construction or placement contributed to well contamination. Coliform bacteria and nitrate contamlnauon were negatively correlated with lot size. In addition, coliform bacteria levels were negatively correlated with casing length, and there was a trend toward nitrate levels being associated with casing length. The results suggest that septic systems may be a source of coliform bacteria and nitrate contam~na- lion of wells. The casing length required in well construction should be increased in areas where wells may be prone to coliform bactena contamination if the mlmmum amount of casing is used. Introdudlon Groundwater supplies drinking water to over 100 million people in the United States (1). Approximately 90 to 95 percent of rural Americans use well water as a source for their drinking water supply; in municipal areas, 75 percent of the water supply systems use some groundwater (2,3). Therefore, the quality of groundwater supplies is an important public health concern. Since soil can treat microbial contaminants in water tbat percolates from the ground surface, groundwater is normally as- sumed to be free of pathogenic microorgan- isms (3). Nevertheless, many waterborne dis- ease outbreaks have been caused by contami- nated groundwater (4). One potential source of well contamina- tion is effluent from septic systems. When septic system effluent moves through soil for a sufficient period of time, bacteria and viruses are likdy to be removed by straining, adsorp- tion, and die-off (3). If absorption fidds are too close to a high water table, permeable sand and gravel, or fractured rock, adequate sewage attenuation may not occur, and microorgan- isms may enter the groundwater (5). If the soil is very impermeable, the sewage effluent may not be absorbed by the ground, and it may emerge onto the surface of the ground. Poorly constructed wells near such sewage flow can 16 Environmental Ilealtho ~\pri11998 be contaminated by surface water infiltration (6). Kross et al. reported that 44.6 percent of private water systems in Iowa tested positive for total coliform bacteria, and nitrate coo lamination was more significant in wells less than 99 feet deep (7), In addition, Risch and Cohen reported a general increase in nitrate concentrations in Indiana groundwater from 1973 to 1991 (8), The presence of coliform bacteria is an indicator of possible sewage pollution and is the principal microbiological parameter used in determining water quality; high levels of coliform bacteria may indicate contamination by fecal coliform bacteria (7,9). Noucofiform pathogens such as Staphylococcus aueeus and Salmonella can also be present in sewage (10). Nitrates are also an important septic sys- tem contaminant. The standard set by the U.S. Environmental Protection Agency (U.S, EPA) for nitrates is 10 milligrams per liter (mg/L) nitrate-nitrogen (NOs-N) (11). This standard was chosen to prevent methemoglobinemia in in[ants (12). Some investigators have hypoth- esized that nitrates are carcinogenic, although there is currently no definitive evidence that they are responsible for the development of cancer or other disorders (11.13,14). Because of the potential public health im- pact of groundwater contaminated with coliform bacteria and nitrates, the hypothesis BLE 1 Soil Groups (5) Soil Group Parent material Chandler/Talledaga Chester Edgemont Glenelg/Chester Hagerstown/Duffield Highfield Linganore ManodGlen, elg Hyersville/Fauquier Hard talcose schist and mica schist Micaceous schist; white quartzite present on uplands Quartz schist, quartzitic sandstone, quartzite conglomerate, pure quartzite Micaceous schists Limestone Metabasalt with considerable quartzite Hard slaty schist or phyllite Thin; platty schistose rock Metabasalt PennlReadington/Croton Red, Triassic-age sandstone and shale that septic systems may be a source of well contamination was tested in Frederick County, Maryland. The prediction that well contami- nation increases as lot size decreases was tested first. Septic system contamination may occur more eeadily when a well is located on a small lot, since the well and septic system may be close to one another. Also, wells on smaller lots are usually close to septic systems on other lots. As a result, less soil may be present for treatment of coliform bacteria. A second prediction was also tested--that as casing length in wells increases, there will be a decrease in coliform bacteria and nitrate contamination, fhe well casing and grouting fnnction as a barrier against the entry of con- laminated groundwater and surface water, Longer lengths of casing may be more likely to exclude undesirable groundwater from the well boreho/e. r BLE 2 Correlation Between Lot Size and Contamination of Wells with Coliform Bacteria and Nitrates n g Coliform Coliform Bacteria g N03. N Value N0~-N Soil Group Bacteria Value {r,) (mg/L) (r~) (number of positive tubes) ChandledTalledga 85 1.365 (SEM = 0,209) 0.017 1.951 Chester 24 0.7~5 {$EM = 0.275) -0.119 5.871 Edgemont 20 0.875 (SEM = 0.352) -0.545c 0.698 Glenelg/Chester 23 0.700 (SEM = 0.317) -0.371 5.87 I Hagerstown/Duffield 34 1.279 [SEM = 0.283) -0.040 7.87 I Highfield 43 1.442 [SEM = 0.310) -0.188 .722 Linganore 42 I.I 07 (SEM = 0.278) -0.133 3.406 383 0.894 (SEM = 0.083) -0.008 4.335 Manor/Glenelg Myersville/Fauquier 129 1.317 (SEM = 0.162) -0.028 1.974 Penn/Readington/Croton 49 1.093 (SEM = 0.245~ -0.046 6.517 All wells 832 1.063 (SEM = 0.060) -0.032 SEM = 0.30f SEM = 1.22T SEM = 0.205' SEM = 1.227 SEM = 0.835 SEN = 0.326 SEM = 0.389 SEM = 0.202 SEM = 0.243 'SEM = 1.008 3.827 (SEM = 0.147 0.199 -0.032 -0.235 -0.008 0.114 -0.470b 0.078 -0.156~ -0.01 I -0.302d 'p < .00h ~p < .0h cp < .02: 't, < .05 /\pri11998. Em'ironmenlnlllealth 17 Methodology The colihn m haderia and ]litrate level lest results for 832 wells weir ohtaincd horn Frederick County, Maryland, Health Depart- ment records. All well samples collected be- tween 1983 and 1991 from wells that were grouted and cased (casing is extended above the surface of the ground) and that were lo- cated in an area not being used for commercial agriculture at the time of sampling were ana- lyzed. Approximately 60 percent of these 832 wells were newly constructed and were ana- lyzed within a short period after construction. The multiple-robe fermentation technique, with 10 mL of water in five separate tubes, was used to measure the presence of coliform bac- teria. The five-tube test is a measurement of the most probable number (MPN) of bacteria per 100 mL (9). The number of positive tubes was the independent variable used in the sta- tistical analysis for this study (one positive tube indicated the lowest degree ofcontamina- timt, and five positive tubes indicated the greatest contamination). Nitrate levels were determined using the cadmium reduction method, and are reported in milligrams per liter as nitrate-nitrogen (N03-N) (9). Lot size and well construction information were obtained from well completion reports, tax records, and building permits Soil types were determined using the Frederick County, Mary- land, Soil Survey; property maps; subdivision r BLE Lot~Size Categories and Nitrate Contamination of Wells in Different Soil Groups Manor/Glenelg Penn/Readington/Croton Highfield Lot Size % NOFN Lot Size % N0~-N Lot Size % N0~-N (Stag/L) (5mglL) (smg/L) <5 acre 87.5 53.8 5 acres 20:0 (n: 8) (n = 19) >:5 to I acre 45.5 69,2 >5 acres 0 (n = 66) (n = 24) >l(n to: 157)2 acres 29.3 46.7 ~ : I acre (n: 13) >1 to 2 acres (n = 13) >2 io 10 acres (n = 15) > I 0 acres (n: 8) plats; site plans; well permits; and well comple- tion reports The wells were sorted by soil type, and those with similar parent material (e.g., limestone soils) were cmnbined into groups (5). Ten soil groups were definer[ (Table 1). A Spearman rank-re'der correlation coeffi- cient (RHO) was calculated for the relation~ ship between lot size and botlt coliform bacte- ria and nitrate contamination using the SYSTAT statistical program (15). The Spearman RHO was used to test the association between these variables because the data were not normally distributed and various transformations did not yield a normal distribution. The Spearman RHO was calculated within each soil group and for all data combined. I£ the probability of the value of RHO was less than ,05, the corre- lation was considered significant. A sign test was used to determine if there was a random distribution of positive and negative correla- r BLE 4 Correlation Between Well Casing Length and C°ntaminati~n of Wells with. ColifOrm Bacteria and NitrateS Soil GrOup n ~ Coliform · Coliform Bacteria ~ N0~,N Value Bacteria Value (q) (rog/L) (number Of positive tubes) ; NOi,N Chandler/Talledaga 85 Chester 24 Edgemont 20 Glenelg/Chester 23 Hagerstown/Duffleld 34 Highfleld 43 Linganore 42 Manor/Glenelg 383 Myersville/Fauquier 129 Penn/Readington/Croton 49 1.365 SEM: 0.715 SEN = 0,875 SEM = 0.700 SEM = 1.279 SEM = 1.442 SEM = 1.107 SEM= 0.894 SEM = 1.3t7 SEM: 1.093 SEM = 0.209) -0.197 0,275) 0.519~ 0.352) -0,175 0.317) -0.115 0.283) 0.191 0.310) -0.199 0.278) 0.102 0.083) -0.163b 0.162) -0.151 0.245) -0,279 1.951 (SEM = 0.3000) '0;i71 5.871 (SEM = 1.227) -0;302 0.698 (SEM: 0,205) -0.085 5.871 (SEM: 1.227) -0,308 7.871 (SEM: 0.835) -0.226 1.722 (SEM: 0.326) 0J055 3.406 (SEM = 0.389) 0,106 4.335 (SEM = 0.202) ~1.048 1,974 (SEM = 0.243) 0.099 6,517 (SEM = 1.008) -0.296~ All wells 832 1.063 "p < .001; ~p < .01; ~p < .02; ~p < .05 (SEM = 0.060) -0.106" 3.827 (SEM = 0.147) -0.090b 18 [invironmenta[ llealth, i\pri11998 m BLE 5 The Effect of Casing Length on Coliform Bacteria and Nitrate Contamination in Wells (Unsewered Areas) Casing Range % Wells (feet) in Range % Coliform Bacteria % N03-N Contamination Contamination 20 3,2 51.9 59.3 21-30 15.1 45,1 69,7 31-40 14.5 38.4 70,4 41-50 25.2 32.4 71,0 51-60 9. I 35.5 67. I 60+ 32.7 31.6 22.8 tions for each pair of variables across the different soil groups (16). To determine which lot-size categories exhibit nitrate contamination potential, soil groups that showed a significant correlation between lot size and nitrate contamination level were categorized by size. Selection of size categories was based on the range of lot sizes found in each soil group. The percentage of ss'ells contaminated with N0~-N at the 5 mg/L level (the level at which U,S. EPA has deter- mined that increased monitoring will occur in public water supplies) was calculated [or each category (11). A Spearman RHO was also calculated for both coliform bacteria and nitrate contamina- tion in relation to length of well casing for ali wells in unsewered areas. A sign test was used to determine if the directions of the correlation coefficients were random among soil types (16). Results A significant negative correlation between colitbrm bacteria contamination and lot size was found only in the Edgemont soil group (Table 2). The two smallest lots in this soil group were contaminated with fecal coliform bacteria. In nine of the 10 soil groups, how- ever, the correlation coefficient was negative (sign test p < .05) (Table 2). If there were no overall relationship between lot size and con- tamination with coldbrm bacteria, there would be an equal number of positive and negative RHO values. For three of the soil groups, a significant negative correlation was found between ni- trate contamination and lot size (Table 2). The significant negative cmrdatiou found {or all wclls was ln'obalfly due plinnlvily to the laigc sample for the Manor/Glenelg soil group. A negative correlation between nitrate level and lot size was present in seven of the 10 soil groups (sign test p > .05). In the Manor/ Glenelg soil group, nitrate contamination lev- ets clearly decreased as lo t size increased (T able 3). Although nitrate levels in Highfietd soil were relatively low, the contamination level may still be related to lot size. In tbe Penn/ Readington/Croton soil group, the pattern of nitrate contamination in relation to lot size was not as tight as in the other two soil groups. A significant negative correlation was found between coliform bacteria and casing length in the Manor/Glenelg soil group. The significant negative correlation found in all wells was also probably due to the large sample size of the Manor/Glenelg soil group. In seven of the 10 soil groups, there was a negative correlation between coliform bacteria contamination and casing length (sign test p > .05). Table 4 shows a negative significant correlation between ni- trate contamination and well casing length for all wells combined and for the Penn/ Readington/Croton soil group individually. A negative correlation was found in seven soil groups (sign test p > .05). When the wells were grouped by casing length regardless of soil type, there was an inverse relationship be- tween the percentage of coliform bacteria con- tamination and casing length (RHO = -0.94, dj' = 5, p < .01 ) (Table 5). There was not, however, a significant correlation between nitrates and casing length (RHO = 0.2, dj'= 5, p > .05). Discussion Nine of the 10 soil groups exhibited a negative correlation between lot s~ze and coliform comamination of wells, suggesling Iha[ sep[Ic systell/S COlltri[)uted ti> to]iii)tm contamination of wells on small lots. In addi- tion, the significant negative correlation be- tween lot size and coliform contamination in the Edgemont soil group and the presence of fecal coliform bacteria in wells located on the two smallest lots indicate drat the wells in this soil group were particularly vulnerable to con- tanunation. Exner and Spalding also reported that wells located near a point source (inter- mittentlyused barnyards) were more frequently contaminated with coliform bacteria (17). Coliform bacteria attenuation may be increased when shallow disposal systems and sand filters are Used on lots less than one acre (10). The negative correlation between lot size and nitrate contamination for all wells and for wells located in three soil groups suggests that nitrate contamination of wells in these soil groups originated from septic systems and was not due to residual nitrogen from past agricul- tural laud use (Fable 2). Studies by Exner and Spalding and Tjostem et al. suggested that elevated levels of nitrates in groundwater are due to point-source contamination (e.g., barn- yards and septic systems) and are not caused gy the past agricultural use (17,18). The obser- vations of this study that indicate tbat septic systems contribute to the contamination of wells are also supported by Tinker, who found that nitrate levels were higher in wells located on the down-gradient side of a subdivision in Wisconsin, and by Ford et al. who tbund that nitrate levels decreased in wells as their dis- tance fi'om septic systems increased (19,20). A buffer strip of trees planted below a septic system may sequester the nitrates from a septic system and thus reduce nitrate entry into wells located in a down-gradient area. Also, sewage effluent denitrification methods could be used to reduce nitrate loading rates when septic systems on small lots are repaired or upgraded (21). Ford et al. found that improper well con- struction, not welt depth, was a factor that caused increased levels of coliform bacteria contamination in wells (20). The clear inverse relationship between coliform bacteria con- tamination and casing length found m this study and observed by Tjostem et al. suggests that coliform contamination may he reduced by using longer well casing lengths (18). Spe- citically, a minimum length of 40 feet of casing should be used when wells are constructed in the Manor/Glenelg soil group (Table 5). Conclusion The relationship between coliform bacte- attggcsts lhat septic systems umy cause im ^pri11998.[nvironmenlalllealth 19 creased levels of well contamination as lot sizes dec, ease. Inslallation of adequate scplic S)SLelns iS needed oil exlsliHg slna[l lots lO ensure attenuation of coliform bacteria. Along- range study is needed to determine what changes septic system use causes itl nitrate concentrations in wells in a subdivision, lnfor- ntation from such a study could show the long- term nitrate contribution LO tire groundwater caused by septic systems and could be used in making zoning decisions about minimum resi- dential lot size in unsewered subdivisions. Coliform bacteria contamination was high- est when casing lengths were shortest, sug- gesting that coliform bacteria contamination in deep wells may be caused by inadequate casing length. Examining coliform bacteria contamination in wells of different depths with the same casing length and in the same geological area would further test the effect of casing length. ~ Acknowledgement: The ottthors thaok the Envi- ronnrental Health staff of the Frederick County Health Department for their assistance. Corresponding Author: Arum Tuthill, Virginiu Deportment oj Health, Office of Water Programs, 400 South Maia Street, Culpeper, VA 22701. Aquifers from which much of the nation draws its drinking water are shrinking faster than they can be replenished. As this happens, they become increasingly vulnerable to toxic contamination. ~' (gotLrce: U.S. Dept. oj ?Ieakh & tinmun Services, Pubbc Ilea[th 5owice) yERENCES · s, iVl. V. (1985)~ %cptic Tank Density and Groundwater Cm~tamination, Groundwo- ier 23:586-591. 2. Bitton. G. and C. P. Gerba I 1984), "Gt:oundwater Pollution Microbiology: The Emerging Issne.' in Groundwater Pollution Microbiology, G. Bitton and C.P. Gerba, eds, New York: John Wiley and Sons, Inc., pp. 1-7 3. Bouwer, H.(1984),"ElementsofSodScienceandGroundwaterHydrology,"Groundwa- ter Pollution Microbiology, G. Bino n and C.P. Gerba. eds.. New York: John Wfley and Sons, lnc_ pp. 9-37 4-. Moore~ A.C R.L. Calderon C.F. Craun. B.L. Herwaldt, A.K. Highsmtth, and D.D. Juranek ( 1994~, "Waterborne Disease in the United States, 1991 and 1992,"Journal of the American Water Works Association, 86(2):87-99 5. TheCatoctinandFrederickSoilConservationDistricts(1985),FrederickCountyMal7- land Soil Survey Supplement Text and Tables. USDA, pp. 16-34, 131. 6. Miller. j.C. (1972), Nitrate Contaminatioo oj the Water-Tabld Aquifer in Delaware, Delaware Geological Survey, pp. 1-2. 7. Kross B.C., D.R. Bruner. G.R. Hallberg, R.D. Libra et al. (1990), The Iowa State-Wide Rural- Well-Water Su~ey. Wnter-Qha!ity Data: htitial Analysis, Iowa Department 'of Natural Resources Technical Inform. orion Series 19, pp. 43-45, 97, 99, 102. 8. Risch, M.R., and D.A. Cohen (1995).AComputerizedDatabaseofNitrate'Conceutrations in Indiana Ground Water, Indianapolis, Iud.: U.S. Geological Survey Open-File Report, pp. 95-468. 9. American Public Health Association. American Watkr Works Association and the Water Environment Federation, eds. (1995). ~taodard Methods for the Exanfination of ~Vastewa- ter. 19th ed.. Washington. D.C.: American Public Health Association, pp. 4-87, 4-89, 9- 1.9-48. 9-49. 10. U.S. Env~ronmental Protection Agency (1978). Management of Small Waste Flows, EPA 600/2-78-173. Cincinnati. Ohio. pp. A-207. C-9. 11. U.S. Environmental Protection Agency (1991), "Part 1I, 40 CFR Parts 141, 142, and 143 (National Primary and Secondary Drinking Water Regulations, Final Rule)," Federal Regmen 56:3538. 12. U.S. Environmental Protection Agency (1989), "Part II. 4(YCFR Parts 141,142, and 143 (National Primary and SecondaryDrinkingWater Regulations: Proposed Rule)," Federal Re, stet, 54:22076-22078. 13. Jensen. O.M. (1982), "Nitrate in Drinking Water and Cancer in Northern Jutland, Denmark. with Spedial Reference to Stomach Cancer." Ecotoxicology and Environmental Safety, 6:258-267. 14. Weisenburger. D.D. (1991). "Potential health consequence o f ground-water contamina- tion by nitrates in Nebraska." Nitrate Contamination: Exposure, Consequence, and Control, I. Bog~irdi and R.D. Kuzelka eds.. NATO ASI Series G: Ecological Sciences 30, Berlin:. Springer-Verlag pp. 309-315. 15. SYSTATStatisticaI Program (1990) Evanston. lib: SYSTAT, Inc. 16. Seigel. S.(1956),Nonparame[ricStatisticsjbrdteBehuvioralSciences, NewYork:McGraw- Hilt Book Co. 17. Exner, M.E., and R.F. Spalding (1985), "Ground~vater Contamination and Well Con- struction in Southeast Nebraska," Groundwater, 23(1):26-34. 18. Tjnstem, J.L., C. Hoilien, and R.E. Iverson, and J. Young (1985), "Bacterial and Nitrate Contamination of Well Water in Northeast Iowa," Proceedings of the Iowa Academy of Sciences, 84(1):14-22. 19. Tinker, J.R., Jr., (1991), "An Analysis of Nitrate-Nitrogen in Groundwater Beneath Unsewered Subdivisions," Groundwater Monitoring Review, 11(1):141-150. 20. Ford, K.L., T.J. Keefe, and J,H. Schott (1980), "Mountain Residential Development and Minimum Well Protective Distances--Well Water Quality," Journal of Environmental Health, 43(3): 130-133. 21. Piluk, R.J. (1988), "Field Study of an Innovative On-Site Nitrogen Reduction," Master's thesis, College Park: University of Maryland. ~0 }invironmenlal flealth, April 04/16/98 09;09 9907 785 7150 USGS WRD ANCH ~001 FAX TRANSM/'/WAL U.S. Geological Survey Water Resouraes Division Alaska District Office: (907) 786-7100 FAX: (907) '/86-7150 OFFICE PHONE: DATE: ~ ~ / ~ - ~ ~ PAGES: Header Plus__~_ Sheets PHON~: PLEASE CONFIRM RECEIPT OF THiS FAX Yes No MODEL3a Superposition model Single well modeled to match the drawdown of the pump test at lot 9 of the Denali View Subdivision. Drawdown is 1.46 ft for 24 hours of pumping. Changes since model2: Single well, at row 30, column 21. Q = 989 ft^3/day = 7401 gpd = 5.14 gpm Kh of layer 1 multiplier in BCF package changed from 10 to 5 KHLl.dat: alluvium = 1 for areas outside of "bowl" alluvium = 10 for areas inside of "bowl" MODEL3b 11 wells added to the model after a drawdown match of 1.7 feet for pumping well location. Notes.txt MODEL4 Superposition model Continuation of Model3 Changes since model3: Layer 3: Fracture zone increased to 4 orders of magnitude greater than rest of bedrock MODEL5 $uperposition model Continuation of Model4 Changes since model4: Layer 2: Kv of Layer 2 increased by 4 orders of magnitude by increasing the multiplier in the BCF package. MODEL6 Calibration to bedrock pumptest Single well model. Used Model4 parameters Pumping well located at lot 3 of Denali View Sub. Q = 0.5 gpm = 96.3 ft^3/day time = 5,7 days drawdown = 3 feet MODEL7 isotropic conditions for layer 3 (Kv = Kb) 11 wells Used parameters from MODEL6 DATA MbSg8 671 61 15 20 Sclmltafl/2 27 2 3,4 2 0,7~ 14.27 881 44C 0.42 0,.~ 27 239 Scimitar82 28 2 4.~ 2 O.OC 0.5C 6.( 65.~ 1 640 Sclmitar~2 29 2 2 0.1~ 0,87 ~-( 44C 0.47 9 Scimitan~2 31 2 2 O.OC 0,47 71 40C 0.83 ScimitarS2 33 2 g.~ 2 O.OC 0.82 7: 30C 0.5 0 ScimitarS2 33 2 9.~ 2 O.OC O.§C 74 364 5 300 ScimitarS2 36 2 2 0.1~ 4.8,~ Page 2 DATA feb 8 98 Table t. Summar'/of Well Imp_act Analysis Surrounding Proposed Denag View Subdivision Location Expected Yiel~ Reduction Usinl Pos[- Initial FlowTest Dapthto Thels Mod8ow Modflov Development Total Yield Yield Water DTW non drawdown drawdown drawdow~ Expected Yield Expected Yield After ID Depth (ft) (gpm) (gpm) (DTW) (ft) (ti) Subdivision Lot Block (fi) (ft) (gpm (gpm) Hydro-fracturing (gpm ;hugach Park 20 4.4 2 2 220 4 7 145 ~.hugach Park 21 8,5 2 0.1~ 6.81 3 290 138 .;hugach Park 22 8,8 4 0.1; 4.87 4 500 0.17 0.8 120 ;hugach Park 23 10.3 0.0( 0.50 § 500 0 0enali View 3 5 8 112 3enali View 9 2 7 320 25 7 180 3ur Mountain 18 0.0( 7,00 8 160 107 3etars Gate 11A 8 0.1~ 7,88 ~9 105 90 3eters Gate 12 6 0,3: 4,67 10 143 25 15 ~eters Gate 13 0.5 0.2( 24,80 11 420 100 ~eters Gate 16 12 112 4 26 ~eters Gate 2 9.5 2 0.0~ 3,91 13 81 54 3eters Gate 2 12 2 0,3( 3,70 14 480 10 0 3eters Gata 3 21 2 0.0, 9.96 15 192 0.5 60 3eters Gate 3 9.5 2 0.0' 0.49 16 90 0.5 27 3etars Gate 4 8 2 0,0; 0.48 17 200 101 ~etars Gate 5 18 0.0' 0.99 18 140 13 ~etars Gate 5 8 0,0: 1.98 19 485 0.8 38 ~etars Gate 5 8 0.0( 0,80 20 200 1,5 20 ~etars Gate 6 7 0,0 21 400 98 3etars Gate 7 14 1 0.0( 1.00 22 280 0.8 0 3etars Gate 7 7 0.0( 0,80 23 300 0.83 195 ~eters Gate 8 7 4 0.0~ 0.80 24 700 0.15 256 3eters Gate 8 7 4 0,0( 0.18 0.58 25 88 50 3 0 11 3etars Gate 9 5.6 2 0.0; 2,93 26 580 0.75 0.5 159 3etarsGate Tract IA 5.2 0.0( 0,80 27 200 2.5 1.7 70 6~ ~eters Gate Tract lB 3.1 0.0' 1,69 28 ~¢lm8ar#1 10 3.4 3 29 740 0,33 0.32 500 ~clmltar~l 10 2,9 I 0,0( 0.32 0.7~ 30 470 0.45 0.62 142 217 ]cimitar~l 10 2,9 0.0( 0.62 31 9OO O.5 90 clmlta~l 15 2.7 0.0( 0,5O 32 840 600 ~cimitar~l 19 1.9 0.0( 1.00 33 300 200 ScimitarS1 19 1.9 0.0: 1.98 38 212 180 ~cimitar~l 20 1.9 0.1~ 4.84 40 111 80 -'cimitar#l 3 1.8 0.2t 7.74 42 200 0,33 82 ~clmSar#1 4 1.8 0.0( 0.33 0.7~ 43 600 0,17 115 Oclmltar~l 4 1.8 0.0( 0.17 0.6C 44 172 0,62 0.6 164 102 .~cimitar#1 5 1.1 0.0~ 053 45 cimilar~l 5 4.4 g 50 200 2.8 3.6 97 0elmitar#1 8 2.2 2 0.0; 3.53 52 370 2.5 128 ~clmitar#t 9 3.1 0.0' 2.49 53 180 40 60 ~ctmitar~2 10 3.8 0.3: 39.67 54 982 0.2 122 ScimitarS2 12 4.4 2 O.oI 0.20 0.6~ 55 503 0.33 440 Scimitar#2 13 5.2 2 0,0' 0,32 0,7~ 56 400 0,8 40 Scimitar#2 13 5.2 2 0.0{ 0.80 57 400 Sclmltar#2 14 8 58 330 330 $cimitaF#2 15 6 3 0.00 0.4.- 80 400 0.08 1.9 100 Scimitar#2 16 5.8 4 0,0; 1.87 81 185 3.5 3.5 145 137 ScimitarS2 19 4.4 0.441 3.08 62 284 6.4 151 8cimSar~2 22 2.1 0.05 6.35 63 200 155 Scimitar2 23 2.1 0.11 4,89 64 300 2.3 2.5 150 Scimitar#2 24 1.9 0 O.OOi 2,50 65 80 ScimitarS2 25 2.4 0.06 4.94 89 180 $cimita,~2 26 3,1 0,03 4,97 Page 1 04/03/18 14:44 ~9(17 344 1490 DAN YOUNG ~ DHHS ENVIRONMENT [~]002 9200 Lake O~ia Parkway 2nd floor, Anchorage, Alaska 99507 (907) 344-9370 Fax; (907) 3 ,4~, 1490 Geological Consulting · Environmenta[Restoration * Regulatory Compliance April 2, 1998 Mr. Jim Cross, P.E. Municipality of Anchorage Department of Health and Human Services Environmental Services Division 825 L Street, Room # 502 Anchorage, Alaska 99519-6650 RE: Denali View ground water modeling evaluation techniques Dear Jim: This letter is a follow up to our meeting today. The Homeowners of S~cimitar Subdivision are very concerned that the ~round water model reported ~f' Bristol Environmental Services is based on sp~_~_glalion and invalid assumpfioj~. As we .pointed out in our March 20 letter, BristoTqsed an aquifer thickness of 500 feet. This is not a reasonable assumption based on the more than one hundred well logs that we reviewed. IOur experience suggests that most of the rock aquifers have thicknesses of 5 to 30 feet. Thicker values would unreasonably skew model results showing much more available water than what is actually available. Bristol did not report most of the values:: that they used in their modeling. The homeowners have hired TERRASAT INC. to independently review Bristol's model. However, an independent review cannot he,done without their data. One of the most common mistakes in modeling is unit conversion (see McDonald & Harbaugh, 1984, pg.46). If the data isn't checked by a peer[ review, then the model must be approved on faith. We request the data be available to the public for 30 days before recommendations are made to the Platting Board. Modflow was not intended by the USGS for use in rock. While Bristol discuss how accepted the USGS model is, they fail to report that they may have misapplied the model to the conditions in the Denali View iarea (refer to the memo by Roy Ireland of Feb. 27, DNR). If Morrow is applied to a rock aquifer, the model then assumes that the rock behaves as a porous media and flow is continuous from cell to cell. This requires cell size to represent actual rock fracture spacing. This phenomena is omitted in Bristol's report. We question the rationale for grid spacings that range from 106 to 850 feet (.page 6). As we pointed out in our March 20 letter, Bristol's general concept is flawed. They used the Theis method to predict 20 feet or drawdown 600 feet from the production well after 180 days. They omitted that draWdown at the production well would be 158 feet, which is much greater than the available drawdown in Denali View wells. These simulation results suggest that the model inputs are not reasonable and that they have ~ not been properly calibrated, since the simullttion has shown drawdown that exceeds the \. available ground water. 04/03/18 14:45 ~907 344 1490,, . DAN ¥01_ING ~ DHHS ENVIR~,Q~ENT '/1'"' ' ' Bristol estimated a ~sdssivity o(5,~.f~/d~y based on a calculat~8~metfic m~ ~om av~able dam. However, theY-us~a ~smissivity of{10~/day for then Modflow model (page 5). ~is wouMbja~ th~ resutts to show ~Ore' ~fiyombte flow conditions. We beheve a de. led discUssion is w~t~ on h~om they sel~ted ~s~ssivi~ ~d why they think it is representative of the model Bristol calibrated then Modflow model from the two wells at Denali View that were flow tested. This does not constitute a model calibration (ASTM D 5%18 3.1.3). If the model is not calibrated on reasonable dam, the probability is low that the model could reasonably represent conditions in the Denali View area. We could continue to ask questions about the reasonableness of the model but believe Bristol should first provide their data inphts and rationale for how the inputs are representative of site conditions. The information we are requesting is expe. ot~i fqra valid model (see ASTM D 57 8).~_ ~[-~{~ t,,~..~.. C..-~-.,.. *~f~ ,~- PO Based on Bristol's reporty.We ~nclude that ithe /ransmissivity and aquifer thickness are not representative o_~.att~ conditions and are not reasonable approximations. The model is not calibrat.gd-'6n valid data (only two eiosely spaced points). Thus, conclusions from the model results are wrong and should be ignored. I have included a list of publications that are useful references when evaluating ground water models. Many of these are available from the National Ground Water Association or from the American Society of Testing Materials. As I discussed today, Gordon Nelson of the United States Geological Survey is available to provide the Municipality an impartial review of Bristol's model. The USGS developed Modflow, and Dr. Nelson has been using this model since at least 1.986. Because of the number of families that could be adversely affected by erroneous model results, we urge you to seek Dr. Nelson's impartial expertise, You may also find someone with Modflow experience at the Corps of Engineers that would be willing to provide an impartial review. If TERRASAT INC. can provide additional information, please feel welcome to call. Sincerely, Dan Young Principal hydrogeologiSt Cc: lim Friderici, Esq. Honorable Mayor Rick Mystrom Sharon Minsch. Chugiak Community Council Gary Prokosch, DNR Elaine Christian, DI-IHS Scimitar, Peters Gate, Chugach Estates Homeowners I~ ikP / MUNICIPALITY OF ANCHORAGE Department of Health and Human Services P.O. Box 196650 Anchorage, Alaska 99519-6650 Date: To: From: Subject: March 27, 1998 Zoning and Platting, CPD James Cross, P.E. Program Manager, On-Site/Water Quality S- 10054 Denali View Subdivision I have read the Effects of New Wells at ProposedDenali View Subdivision, Peters Creek, Municipality of Anchorage, Alaska by Bristol Environmental Services Corporation, and have the following comments: Prior to the November 1997 meeting of the Anchorage Platting Board, in discussions with Mr. James Munter of Bristol Environmental Services Corporation and Mr. Dee Hi of Dee Hi Engineering, the Department of Health and Human Services stated its position on what information was needed to satisfy the requirements concerning water availability at the proposed Denali View Subdivision. The position was that further efforts had to be made to coordinate with local residents additional aquifer tests on the existing wells within the proposed subdivision. This additional testing was needed to adequately stress the aquifers and to determine the effects of the taking of water from these wells on the existing wells surrounding the proposed subdivision. Even Mr. Munter had stated in a public meeting that the original pumping tests were not sufficient to adequately stress the aquifers to make this determination. This report contains no data concerning new aquifer tests conducted at this proposed subdivision, so it must be assumed that well flow data used for the models is from the original tests. Shortly after the November, 1997 meeting of the Anchorage Platting Board, I contacted both Mr. Munter of Bristol Environmental Services Corporation, and Mr. Hi of Dee Hi Engineering to determine if they planned on continuing with the requirements for the proposed subdivision, and was given no definitive answer. Since that time, the Department of Health and Human Services has had no information submitted for review or comment, nor has it been requested to make any determinations concerning submittals for review, until this report was submitted. Although both the State of Alaska Departments of Natural Resources and Environmental Conservation received advance copies of the above referenced report for review and comment, the Department of Health and Human Services received no information in advance. In summary, there is still inadequate information to determine the effects of the addition of 11 newly producing wells within this subdivision on the existing surrounding wells. Adequate flow tests must be conducted on these new wells, and example wells from the multiple bedrock aquifers surrounding the subdivision must be monitored to make this determination. Due to the concerns of elevated nitrate levels in ground water in this area, the following note shall be placed on the plat: "On-site wastewater systems using nitrate reducing technology may be required to develop lots within this subdivision." Practical Applications: Evaluate Remediation Alternatives Simulate Natural Attenuation Processes Risk Assessment Analysis (RBCA) Delineate Wellhead Protection Areas Design Site Dewatering Systems Presented by: Robert Cleary, R.W. Cleary and Associates Thomas Franz, Beatty-Franz Associates Ltd. and Waterloo Hydrogeologic Inc. Nilson Guiguer. Waterloo Hydrogeologic Inc: ~epresenting :l~nt~l~StS ~gul,~.tO~;s ~nagers ~fltraetors Mgnufacturers Suppliers (800) 551-7379, (614)898-779I F~ax (614) 898-7786 Please circulate additional ~opies you your company, please route this informa- tive brochure to replacemont, depart- ment head, or training c rector. M~R-31-98 TUE 15:16 DE0 00~M OFFIOE FAX NO, 9074655070 P. 02/02 ~RO~ : MMM CONTRACTING PHONE NO, : 68@~2~8 Mar, 31 1998 09:10AM Pi RECEIVED Miehdlo Brown. Commlsnloner Alaska Dopanmonl of Envlorm~n~ Cease'nation ~10 Will.ugh~.Av~., Suil~ l,O~ Juneau) Alask~ 99801-1,795 APR 1 1998 Municipality ot Anct~orage Dept, Health & Human Services Re: l)~ali View Subdivision. Water Quanfi~y and Quality I)ear Ma..Brow~: At our me~ng March 27, 1998 with Ja~J~ Adair and Jim W~iss. Janiee Adair slagd ar ~he boginning of the me. ting sh~ would not pall DEC :~v~ew l~'a~rs bagk, I confumod with her that it wa, not DEE's pallcy ta re,dow ~ubdivifion~ and they wcr~ not funded by thc l.ogislatm' tbr this, Abe, ~hat th~ did .,n haw ibc porsonnd or ~sotwccs lo &~ thb job In'oporly, review of Denal{ Xtlt~ 8ubdi~iaim~ is proof of how m~ thi~ statement is, During thin mc~li~g I prodtr, od DEC information ttMt had boon wi~'old from my ~q0a~r~ by Kcvtn Klowano ~ontradi¢~ng Ja~ice Ad~ ~-ttm, ofMarc~l ~3, 199g. Mr. Woiae admitted his let~r of Feb. 22nd was &mo without l~c4~dng or ~viowlug om' lalxst IO, di~ology r~pog ~ Fgb, 9th for the ama. Both Janie~ Adah; and llm Wei.se had be~n advised this report wa~ co.trig, Mi', Woiae was in Washington DC rc:qlleliing mont:y at that tlra~, l~&; W~is¢ also a&ni~ n~r rcvlowh~ th~ soils for Danall View, however he cmnmentad in his l~tter oi1 the nitrate iaau~s in lbo subdivision. This subdivision has 11 lot~ with an slz~ of 3,44 acres 'll'~roe woll~ drilled on site prmKng good water_ The soils sandy gravsl with sil~ ia ideal/'or 'l'h~se letters tuate had a drastic d~'b,Jmt;ntal offog on thc subdivision 1;~ro~s and I t~qu~tod they be pulled. ltowcvex, lailiee Adair veaflrrmed her position that she woula n0~ pun them. The cos~ ofth~m Iol!t~o3 a~tions of your D~partm~nt haw bc,~n to cost tho dcv01opor one yeaz~ a W~.mendoug amount, of' ongineefing~ 6me, m~mey and grief, and a loss of n;put~ljo~. Also, th~ ~lToet has bonn lbr progeny wlu~s to' plnmmot in t}~ ~. 1 now h,xv~ ~clotm doubtS about th~ flnm-teial success of Denali View Subdiviaion. ' Wc ha~o had ,3xid-nahte hydrology work done by Jim Munt~r a wall lmoWn and highly a~rodi~gd hydrologist. Y0~ depam~t~lt h~ produced no hydrolo/O' work in tho aroa, no study, no eomprehemivo mVm~, and has hold bae. k lnfomaafion. Tho~ l~tters and a plethora 'ofintbrmation produ~vd for stoa x~idonc~ fighting Donalt Viow 9ubdMsion haw ~au,~od a campaign of ra~dea&ng information and di~aontion amoung properly in ~ ~r~ and quoti~ DEC. 7!,ti~ has damaged Chugiak arid parfi;tdarly fl~o Sdmi~' ~a nnd my naputation, l nm a Z'~ y~r reaid~a of Alike. ploa~ ~onta~t ~ne at 6884237 or fax ~oxnmemla to 61~g-123g, i n~ed your h~lp in resolving this in~ediat~ly, today, aa my plat m~ting is on Apdl, let, .,~/~iocem_ly, co: ,d Gev, Tony lr.2nowle~ Mayor Rick rt~. vie Koring Sell, Frank MiIrkowski R~p. Fred Dyaon Sen. Don Young NAR-31-98 TUE 15:16 DEC COHM OFFICE FAX NO, 9074665070 P, O1/02 DEPARTMENT OF ENVIRONMENTAL CONSEI~.VATION OFFICE OF THE (2OMMISSION£R 41D W~lloughhy Ave.. ~e 105 To: ATTN: Jim Cross Fax: 907/343-4786 [:rOm: Michele Brown Date: March 31, 1998 Re: Denali View Subdivision Paoo*: 2 CC: [] Urgent [] For Review [] Please Comment [] Please Reply r-i Please Recycl No~e~: Thi~ is being widely distributed - thonght you might be interested· MUNICIPALITY OF ANCHORAGE Department of Health and Human Services P.O. Box 196650 Anchorage, Alaska 99519-6650 Date: To: From: Subject: March 27, 1998 Zoning and Platting, CPD James Cross, P.E. Program Manager, On-Site/Water Quality S-10054 Denali View Subdivision I have read the Effects of New Wells at Proposed Denali View Subdivision, Peters Creek, Municipality of Anchorage, Alaska by Bristol Environmental Services Corporation, and have the following comments: Prior to the November 1997 meeting of the Anchorage Platting Board, in discussions with Mr. James Munter of BristoI Environmental Services Corporation and Mr. Dee Hi of Dee Hi Engineering, the Department of Health and Human Services stated its position on what information was needed to satisfy the requirements concerning water availability at the proposed Denali View Subdivision. The position was that further efforts had to be made to coordinate with local residents additional aquifer tests on the existing wells within the proposed subdivision. This additional testing was needed to adequately stress the aquifers and to determine the effects of the taking of water from these wells on the existing wells surrounding the proposed subdivision. Even Mr. Munter had stated in a public meeting that the original pumping tests were not sufficient to adequately stress the aquifers to make this determination. This report contains no data concerning new aquifer tests conducted at this proposed subdivision, so it must be assumed that well flow data used for the models is from the original tests. Shortly after the November, 1997 meeting of the Anchorage Platting Board, I contacted both Mr. Munter of Bristol Environmental Services Corporation, and Mr. Hi of Dee Hi Engineering to determine if they planned on continuing with the requirements for the proposed subdivision, and was given no definitive answer. Since that time, the Department of Health and Human Services has had no information submitted for review or comment, nor has it been requested to make any determinations concerning submittals for review, until this report was submitted. Although both the State of Alaska Departments of Natural Resources and Environmental Conservation received advance copies of the above referenced report for review and comment, the Department of Health and Human Services received no information in advance. In summary, there is still inadequate information to determine the effects of the addition of 11 newly producing wells within this subdivision on the existing surrounding wells. Adequate flow tests must be conducted on these new wells, and example wells from the multiple bedrock aquifers surrounding the subdivision must be monitored to make this determination. Due to the concerns of elevated nitrate levels in ground water in this area, the following note shall be placed on the plat: "On-site wastewater systems using nitrate reducing technology may be required to develop lots within this subdivision." 04/03/18 14:43 ~07 344 14§0 DAN YOUNG *~- DHHS ENVIRONMENT ~001 i ;~~'x~2nd:gleor~,A~chorage~:99~ff7 907 34z1:9370 ~a~907 344 14~0 ! ii:: ~lii~a[i~oUsultingx · Envir, onmen}al:RestovatiOn o Fax Cover Sheet Date: 04/03/98 To: Jim Cross MOA DHgl,q Fram Bill Lawrence TERRASAT INC. Re: CC: Pages including cover sheet: Time: 1:26 PM Phone: 907 343 4360 :iFax: 907 343 4786 Phone: 907 344 9370 Fax: 907 344 1490 Denali View Ground Water Modeling Evaluation Techniques Sharon Minsch-CCC, James Frlderiei, Esq., Gary Prokosch-DNR, Elaine Christian- DIt'FtR, Jeff Williams -Scimitar Homeowners 4 [] Urgent [] For Review [] Please Comment [] Please Reply [] Please Recycle · Message: Jim, Attached please find our April 2, 1998 letter concerning the evaluation of the ground water modeling. FROM : PHONE NO, : Oct, 01 1997 04;59PM Pi Jeff and Mary Williams 907-688-2 23 To: Jim Cross Fax: 343-4786 From: left and Mary Williams Date; 03/30/98 Re: Tetras8~ review Page~; 4 {lC: [Click herr. and type name] [] Urgent [] Fez Review PI PI~as~ C~nme~lt [] PI~ ~y ~ PI~ ~ dim.'Here is the Terrasat rep~,y to the ~atest Bristol Envirnomentat Modeling report. In~addYdon I have included a letter from the Meyeds to the Mayor accosing Mary of gross misuse of.Muncipal equipment and time. Everything that MaW is acused of is,~lntrue. The ~etter was the result of Mary faxing the neighbods perrn4ssion to test their wells agreement to the Meyers. She had followed the library policy that the fax machine could be used for personal use on your own time. This was the same day you came to the library after work because Mary had run out of time to fax anything personal ( she used her breaks and lunch faxing these forms to DHI and the Meyers). If you could write something corroborating the fact that Mary did not use Muncipa[ time to de this and that you had to come to the library to pick up the forms, ~t would be of great help to us. FROM : PHONE NO. : Oct. 01 1997 04:99PM Pm IIIIII I III l~Iunioi!~.ity of,~.ncho~e Attn. Margaret O'Brieo We have reviewed tho above report submitted by Bristol l/w. dxonmenm] Services Coi-4x:u~tion a.~d h~,ve several concerns. We a.m most conce~mea ove~- the fa/luxe ~ provue ~f~m~on u~ W ~ua~e the Po~n~ e~s on the ~und wa~ su~ly d~ ~ ~e ptopoa~ Den~ View gubdi~s~On. We have aumm~z~ some conchs The The, is solut/on was u~ co predict '~0 feet of dmwdown ac 600 feet from a gpm simulated well in the eentea: of the proposed subdivision, We bdievc chat this calculation {s cortex:t, but ate concerned that the 158 feet of d~awdown at this production well was not discussed, l~b evlde~ce ex/scs To show that 138 feet of awi~hle drawdO~ exist in the bedrocl{' w~lls. ~ addition, wdis that ate 600 feet away and already go dry during the yea~ woutd be severely impacted by 20 f~et of ltead loss. /x~ g-/nth weEs, this wogl~ co.elate to a loss vf about 29 gallons of storage. The report discusses modeling of the sm~d and gravel aquifer Information was not provided, however, for the boundary cqnditlons u~ed ~ the r~del. A pee~ r~v£cw of the modeling is not possible without .~I of th~ infoimar/on use~i ia thc mod~l. The report does nor m/mt/on a we, Il drilled in th~ autumn of 1997 within Denal/ View Suhct/v/don that was nero' the well comities/ in ~ sa_nd a gvave2 aquifer. 1~0 well log or geological information ha~ been provided from ~,kis wall. We arc ennaerned how this [r~nation was use~ in the mathematical mog~l, Bristol l~nvironm~r,r~s model use~ an ~uif~r thicknems of 5~ f~t f~r thc Io~r aqu~. Wc q~$6on the va~' ~ ~s estimate. W~s wlt~ t~ n~y s~di~iaions. ~how a discontinuous aqua, TE~AT, I~C. 's d~g r~dts ~ si~ condi~ons august ~at fmcture[[~ that produce wa~r ~ le~a th~ 30 T.' kl[3~nakiViewk3 -20-98bri~olxeply. doc Page ~ of 2 FROM : PHONE NO. : Oa/Z4/18 18:18 9907 344 1490 TE~ASAT Oct. 01 1997 05:~0PM P3 feet r~ck. We ere conoertxe~ bat usm ~n aquifer th~ess of 500 f~ would ~r~y ov~6m~t~ tho ~o~-t~ p~hc~n capabilities o~ ~e ~. We ~e ~e~d thai the ~mi~s/Wt~ v~ue~ ug~ ~ ~e mod~ w~r~ ~ from T~SAT~ ~C. '~ ~ve ass~pfion$ We m-e ~aW~e of ~y aqulf~ ms~g wi~M the b~k ~uifer that world provide ~ m~ng~l ~sn~ssivip ~ue. We question ~hy the ~smis~W ~as not m~ur~. We ~so question whe~ a s~viw ~y~ ~ done to show ~e r~t~e ~ of av~le Bristol Environmental eontinuv.~ to suggest hydrofrac~uring as a solu~on to the water supply problems in the a~ea (,sun'ound~g fire proposed De. nail View Subdlvixion_ We ~e unable to evalhate the success of c~md hydrofracturing pmjeots irt Skyline Subdivision because n0 flow~test data from l~efore or after hyflroftacturing has been provided. ; We conclude that the Plztling board's No~ember 1997 request for new data has not bean addrassea:I in this lai~.~t report SuppOrliag evidence for the modeling is absent, thus pr~veating a r~asonable review, Our recommendations remain the same as i~ November of 1997. We recommend tiaa additional aquifer t~sting be conducted t~ gain inl~ormafion that will ~ll,~w fox' a complete evaluation and ~na/ysis of aquifer chaxa¢~erisfies. ~ on our understanding of elevated alu'ares and uflcenainty of bedrock eor~titlons, we also recommend that niwale reducing septic syst, '.ms be required for this development. $inw..mly, Dan Young Ce~if-ie~ Professional Geologist ~und Wa~er ?rofes:fional C~ Tim Cro~, DId}IS T :\ D ~a~liVi~v~, \ 3-20-9 ltbri ~-~L~ply. doc Paa~ 2 of 2 FROM : PHONE NO. : Oct. 01 1997 05:01PM P4 October 30~ 1997 Mayor Rick Mystrom Municipality of Anchorage · P. O, Box 196650 Anchorage, AK. 99519-6650 Re: City employee's misuse of facilities It has come to our attention during the platting process that Mary Williams has been spending her time and 'facilities at the Eagle River Library to work against our proposed Denali View Subdivision. She is the manager of the Eagle River Library. She is, also, a resident in an adjoining subdivision and has made lhe statement that she is going to stop this subdivision from being approved. Her feelings and work against the subdivision process on her own time is her prerogative. However as a municipal employee to use the public library, her place ofemployment~ fbr this purpose is a waste and misuse of taxpayers dollars. She has used the phone and {;ax at the library for hundreds of communlcations on library time. She has a fax machine and phone at her residence, however she has chosen irresponsibly to use the City's facilities. We would hope that as the Mayor of Anchorage that you would not condone such actions by employees of the Municipality of Anchorage. Sincerely, ,:_-~ // 4//.", ,:.'I' ~au! Myers &,.~rleen Myers ?. O~ BoxY670351 Chugiak, Ak. 99567 ~Cc: Mrs. Moe Head Librarian DELR WILL BE READ ON UNIT 67 USING FOP~T: ............................................................................ 425,12 212,56 212.56 212.56 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106,28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106,28 106~28 106.28 106,28 106.28 106,28 106.28 106.28 106.28 106.28 106.28 106.28 106,28 106.28 106.28 106.28 106,28 106.28 106.28 212.56 212.56 212.56 212.56 425.12 425.12 850.24 850.24 850.24 850.24 1700.5 1700.5 DELC WILL BE READ ON UNIT 68 USING FOP~T: {10F7.2) ............................................................................... 850,24 850.24 850,24 425.12 212.56 212.56 212.56 106.28 106.28 [06.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 106.28 X06,28 106.28 106.28 106.28 106.28 ~06.28 106.28 106.28 106,28 I06,28 ~06.28 106.28 106.28 106.28 106,28 106.28 106.28 106.28 106.28 !06.28 212.56 212.56 212.56 425.12 850.24 I 2 3 4 5 6 7 8 9 10 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 I 5~000 5.000 5,000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.060 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5,000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 2 5,000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5,000 5.000 5.000 5,000 5,000 5,000 5.000 5.000 5,000 5.000 5,000 5.000 5,000 5.000 5.000 5,000 5,000 5.000 5,000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5,000 3 5.000 5.000 5,000 5,0OD 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5,000 5.000 5,000 5.000 5.000 4 5,000 5,000 5,000 5,000 5,000 S,O00 5.000 5,000 5,000 5,000 5.000 5.000 5,000 5.000 5.000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 50.00 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5.000 B.O00 12 5.000 5.000 5,000 5,000 5,000 5.000 5.000 5,000 5,000 5.000 SO.O0 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5,000 5.000 13 5.000 5.000 5,000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 50.00 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5,000 5,000 5,000 5,000 5.000 5,000 5.000 5.000 14 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5,000 50.00 5,000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 15 5,000 5.000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 50.00 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5,000 5,000 5.000 5.000 16 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 50.00 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 6.000 5.000 6.000 5.000 17 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5,000 S.O00 5.000 50.00 5,000 5.000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5.000 5,000 5.000 5,000 5.000 5,000 5,000 5.000 5.000 18 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5,000 5.000 5.000 5,000 5,000 5,000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 0 19 5.000 5.000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5.000 5,000 5.000 5,000 5.000 5.000 5,000 5.000 5,000 5.000 5.000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 0 20 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5,000 5,000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 50.00 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 50.00 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 S.O00 5.000 5.000 5,000 5.000 5.000 5.000 50.00 5.000 5,000 5,000 5,000 5,000 5.000 5.000 5.000 5.000 5,000 5,000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5,000 5.000 5.000 50.00 5.000 5,000 5.000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5,000 5,000 5.000 5.000 5,000 5.000 50,00 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5.000 6,000 5,000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 50,00 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 50.00 50.00 5.000 5,000 5,000 5,000 5,000 5,000 5.000 5,000 5.000 5,000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 50,00 50,00 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 50.00 50.00 50.00 5,0~0 5.000 5*000 5.000 5,000 5.000 50,00 50,00 50.00 50,00 50,00 50.00 50,00 5,000 5.000 5,000 5.000 5.000 5,000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5,000 5,000 5,000 5,000 5,000 5,000 5.000 5.000 28 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5,000 5,000 5,000 5.000 5,000 5,000 5.000 5,000 50.00 50,00 50,00 50.00 50.00 50,00 50.00 50.00 5.000 5,000 5.000 5.000 5,000 5.000 5,000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 29 5.000 5.000 5.000 5,000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 50,00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5,000 5.000 5,000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5,000 5.000 5,000 5,000 30 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 B.O00 5,000 5,000 50.00 50.00 50.00 50.00 50.00 50,00 50.00 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5,000 5,000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 31 5.000 5.000 5.000 5.000 $.000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 50.00 50.00 50,00 50.00 50.00 50.00 50,00 5.000 5.000 5,000 5,000 5,000 5,000 5,0~0 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 32 5,000 5.000 5.000 5.000 5.000 5,000 S.O00 5.000 5,000 5,000 5,000 5,000 5.000 5,000 5.000 50.00 50.00 50,00 50,00 50,00 50.00 50.00 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5,000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5,000 5.000 5.000 5,000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5,000 33 5.000 5,000 5,000 5.000 5,000 5.000 5,000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 50.00 50.00 50.00 50.00 50.00 50.00 50,00 5.000 5.000 5.000 5,000 5.000 5.000 5,000 5.000 5.000 5,000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5,000 5.000 5,000 5.000 5.000 5,000 5.000 5,000 5,000 5,000 5.000 5,000 5.000 5,000 5,000 0 34 5,000 5.000 5.000 5,000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 50,00 50.00 50.00 50.00 50.00 50.00 50.00 5,000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5.000 5,000 5.000 5,000 5.000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5,000 5.000 0 35 5,000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 50.00 50,00 50,00 50,00 50.00 50.00 50,00 5,000 5.000 5.000 5.000 5,000 5,000 5,000 5,000 5.000 5,000 5.000 5,000 5,000 5,000 5.000 5.000 5.000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 0 36 5.000 5,000 5,000 5,000 5,000 5,000 5.000 5.000 5,000 5.000 43 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 §.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 44 5,000 5,000 5.000 5.000 5,000 5.000 5,000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5,000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 45 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 B.O00 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 46 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5,000 5.000 5.000 5,000 5.000 5.000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 47 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5,000 5,000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5,000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 48 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5,000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5.000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5,000 5,000 5,000 5,000 5,000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5,000 5.000 BOTTOM FOR LAYER I WILL BE RF~%D ON UNIT 70 USING FORI4AT: (54F4.0) I 2 3 4 5 6 7 8 9 10 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 I -70.00 -70.00 -70,00 -70.00 -50.00 -50.00 -50.00 -50.00 -50,00 -50.00 -50,00 -50,00 -50.00 -50,00 -70,00 -70,00 -70,00 -70,00 -40.00 -40.00 -50.00 -50,00 -40.00 -30.00 -40.00 -25,00 2 -70.00 -70.00 -70.00 -50.00 -50,00 -50.00 -50.00 -50,00 -70.00 -70.00 -70.00 -50.00 -40.00 -40.00 -40,00 -40.00 25.00 -25.00 -15.00 -12.00 3 -50,00 -50.00 -50.00 -50.00 -50.00 -50.00 -50.00 -50.00 -70.00 -70.00 -50.00 -50,00 -40,00 -40.00 -40.00 -40,00 4 -50.00 -50.00 -50.00 -50,00 -50,00 -50.00 -50.00 -50.00 -50,00 -50,00 -50.00 -50,00 -30.00 -25.00 -25.00 -25.00 5 -50,00 -50,00 -50.00 -50.00 -50.00 -50,00 -50.00 -50.00 -50.00 -50.00 -50.00 -50,00 -25,00 -20.00 -20.00 -15.00 -10.00 -10.00 -1o,00 -10.00 -10,00 -10,00 -10.0o -10.00 6 -50.00 -50.00 -50,00 -50.00 -50.00 -50.00 -50.00 -50,00 -50.00 -50,00 -50,00 -50,00 -15.00 -15,00 -10.00 -10.00 0 ~ -40.00 -50,00 -50.00 -50.00 -50.00 -50,00 -50.00 -50.00 -50.00 -50.00 -50.00 -40.00 0 8 -50.00 -50,00 -50,00 -50,00 -50.00 -50.00 -50,00 -50.00 -40.00 -40,00 -40.00 -40.00 -50.00 -50.00 -50.00 -50.00 -50,00 -50.00 -40,00 -40.00 -40.00 -20.00 -12,00 -10.00 -50,00 -50.00 -50,00 -50,O0 -50.00 -50.00 -50.00 -50.00 -50.00 -40.00 -30,00 -30,00 -50.00 -50.00 -50.00 -50,00 -50.00 -50.00 -50.00 -50.00 -50.00 -30.00 -25.00 -25.00 -10,00 -10,00 -10.00 -50.00 -50.00 -50,00 -50.00 -50.00 -50.00 -50.00 -50.00 -50.00 -20.00 -20.00 -15,00 -10,00 -10.00 -10.00 -50.00 -50.00 -50.00 -50.00 -50,00 -50.00 -50.00 -40,00 -40.00 -[0.00 -10.o0 -10.00 -50.00 -50.00 -50.00 -50,00 -50.00 -50.00 -40.00 -40.00 -30,00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -50,00 -50.00 -50.00 -50.00 -50.00 -50,00 -40.00 -30.00 -25.00 -10.00 -10.00 =10.00 -10.00 -10.00 -10.00 -50.00 -50.00 -50.00 -50.00 -50.00 -50.00 -30,00 -30,00 -25,00 -10.00 -10.00 -10.00 -70.00 -70.00 -70.00 -50.00 -50.00 -50.00 -40.00 -30,00 -40.00 -50.00 -50,00 -50,00 -50.00 -70.00 -70,00 -50.00 -50.00 -50.00 -40.00 -30.00 -30.00 -10.00 -10.00 -10.00 -50.00 -50,00 -50.00 -50.00 -50.00 -70.00 -50.00 -50.00 -40.00 -20,00 -20.00 -15.00 -50.00 -50,00 -50.00 -50,00 -50,00 -50.00 -40.00 -40,00 -30.00 -10.00 -10,00 -10.00 -50,00 -50.00 -50.00 -50.00 -50.00 -50.00 -40.00 -30,00 -25,00 -10.00 -10.00 -10,00 -10.00 -10.00 -10.0o -50.00 -50,00 -50.00 -50.00 -50,00 -50.00 -30.00 -25.00 -20.00 -10.00 -10,00 -10.00 -10.00 -10,00 -10.00 -50,00 -50.00 -50,00 "50,00 -50,00 -50.00 -25,00 -20,00 -15.00 -50.00 -SO.O0 -50.00 -50.00 -50.00 -50.00 -20,00 -15.00 -10,00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 9 -50.00 -50.00 -50.00 -50.00 -60.00 -50.00 -50.00 -50.00 -50.00 -50.00 -50.00 -50,00 -50.00 -50.00 -50.00 -50,00 -50,00 -50,00 -50.00 -40.00 -40.00 -40.00 -40,00 -30.00 -30.00 -25,00 -25.00 -20.00 -15.00 -12,00 -10.00 -lO,O0 -10.00 -10.00 -10,00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10,00 -10.00 -10.00 -10.00 -10.00 -10.00 10 -50.00 -50.00 -50.00 -50.00 -50.00 -50.00 -50,00 -50.00 -50.00 -50.00 -50.00 -50.00 -50.00 -50.00 -50,00 -50.00 -50.00 -50.00 -40,00 -40,00 -40,00 -40.00 -30.00 -30.00 -30,00 -25.00 -20.00 -15.00 -12.00 -12.00 Il -50.00 -50,00 -50,00 -50.00 -50,00 -50.00 -50,00 -50.00 -50,00 -50,00 -50.00 -50.00 -50.00 -50.00 -50,00 -50,00 -50,00 -40.00 -40.00 -90,00 -90.00 -40.00 -30.00 -BO.O0 -25.00 -25,00 -20,00 -15.00 -12,00 -10.00 -10.00 -10,00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10,00 -10.00 12 -50.00 -50.00 -50.00 -50.00 -50,00 -50,00 -50.00 -50,00 -50.00 -50,00 -50.00 -50.00 -50.00 -50,00 -50.00 -50,00 -40,00 -40.00 -40,00 -90,00 90.00 -30.00 -30.00 "25.00 -25,00 -20,00 -15.00 -15.00 -12,00 -10,00 -50,00 -50.00 -50,00 -50,00 -50,00 -40.00 -40.00 -40.00 -40,00 -90.00 14 -50,00 -50.00 -50.00 -50.00 -50.00 -50.00 -50,00 -50.00 -50.00 -50.00 -50,00 -50,00 -40.00 -40,00 -40.00 -40.00 -40,00 -40,00 -40.00 -90.00 -80.00 -30.00 -25.00 -25,00 -20.00 -20.00 -15.00 -12,00 -12.00 -10.00 -10.00 -10,00 -10.00 -10,00 -10.00 -10.00 -lO,O0 -10,00 -10.00 -10,00 -10.00 -10,00 -10.00 -10,00 15 -50.00 -50,00 -50,00 -50.00 -50.00 -50,00 -50.00 -50,00 -50.00 -50.00 -50.00 -50.00 -40.00 -40,00 -40,00 -40,00 -40.00 -40,00 -40.00 -80.00 -80.00 -25.00 -25.00 -20.00 -20,00 -15,00 -15,00 -12.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10,00 -10.00 -10.00 -lO,O0 -10.00 -10.00 -10.00 16 -50.00 -50,00 -50,00 -50.00 -50.00 -50.00 -50.00 -50.00 -50.00 -50.00 -50.00 ~50,00 -40,00 -40.00 -40.00 -40,00 -40,00 -40.00 -30.00 -80,00 -80,00 -25.00 -25,00 -20.00 -20.00 -15,00 -12.00 -12.00 -10,00 -10,00 0 17 -50.00 -50.00 -50.00 -50,00 -50.00 -50.00 -50,00 -50.00 -40,00 -50,00 -40.00 -40,00 -40.00 -40,00 -40.00 -40.00 -40.00 -30.00 -30,00 -BO.O0 -75.00 -25,00 -20.00 -20,00 -15.00 -15,00 12,00 -12,00 -10.00 -10.00 0 10 -50,00 -50.00 -50,00 50,00 -50,00 -50,00 -50,00 -40.00 -40,00 -40.00 -40,00 -40.00 -40.00 -40,00 -40.00 -40,00 -30.00 -30.00 -75.00 -75,00 -25,00 -20,00 -20.00 -15,00 -15.00 -12,00 -12,00 -10.00 -10.0o -10,00 0 19 -70,00 -50.00 -50.00 -50.00 -50,00 -50.00 -,10,00 -40.00 -40.00 -40,00 -40.00 -40.00 -40.00 ~40,00 -40.00 -30.00 -30.00 -30.00 -75.00 -75,00 -25,00 -20,00 -20,00 -15,00 -12.00 -12.00 -12.00 -10,00 -10,00 -10.00 0 20 -70.00 -50.00 -50.00 -50.00 -50.00 -40.00 -40,00 -40.00 -40.00 -40,00 -40.00 -40.00 -40.00 -40,00 -30,00 ~30.00 -30.00 -O0.O0 -75.00 -75,00 -20,00 -20.00 -15.00 -15,00 -12,00 -12,00 -10.00 -10,00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -lO.00 0 21 -50.00 -50.00 -50,00 -50.00 -40.00 -40.00 -40.00 -40.00 -40.00 -40.00 -40.00 -40.00 -40,00 -40.00 -30,00 -30,00 -30.00 -75.00 -75,00 -70.00 -20.00 -15.00 -15,00 -12.00 -10,00 -10,00 -10.00 -10.00 -10.00 -10.00 -10.00 -10,00 -10.00 -10.00 -10,00 -10.00 -10.00 -10.00 -10.00 -10.00 -10,00 -10.00 -10.00 -10.00 -10,00 -10.00 -lO.O0 -10.00 -10.00 -10.00 -10.00 -10,00 -10,00 -10.00 0 22 -50.00 -50,00 -50.00 -40.00 -40.00 -40,00 -40,00 -40.00 -40,00 -40.00 -40,00 -40,00 -40,00 -30.00 -30.00 -30.00 -75,00 -75.00 -75.00 -70.00 -20,00 -15.00 -15.00 -12,00 -10,00 -10,00 -10,00 -10,00 -10.00 -10.00 -10,00 -10.00 -10.00 -10.00 -10,00 -10.00 -10.00 -10.00 -10,00 -10,00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10,00 -10.00 -LO.O0 -10.00 -10,00 -10.00 -10.00 -10.00 0 23 -50,00 -50,00 -50,00 -40.00 -40.00 -40.00 -40,00 -40,00 -40,00 -40.00 -40.00 -40.00 -40.00 -30,00 -30.00 -25.00 -75.00 -75,00 -70.00 -70,00 -15,00 -15,00 -12,00 -12,00 -10.00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10,00 -10.00 -10.00 -10.00 -10.00 -10,00 10,00 -10.00 -10.00 -10.00 -10,00 -10.00 -10,00 -10.00 -10,00 -10,00 -10.00 -10.00 -10.00 -10.00 0 24 -50,00 -50,00 -50.00 -40.00 -40,00 -40.00 -40,00 -40.00 -40.00 -40.00 -40.00 ~40.00 -40,00 -30.00 -30.00 -25.00 -75,00 -75.00 -70.00 -70.00 -65.00 -65,00 -62.00 -12,00 -10,00 -10.00 -10,00 -10,00 -10.00 -10.00 O25 0 26 0 27 0 28 0 3O 0 31 0 32 0 33 0 34 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10,00 -10.00 -50,00 -50.00 -40.00 -40.00 -40.00 -40.00 -40.00 -40,00 -40.00 -40.00 -40.00 -40,00 -40.00 -30.00 -30.00 "25.00 -75.00 -75,00 -70.00 -70.00 -65.00 -65,00 -62,00 -12,00 -10.00 -10.00 -10,00 -10.00 -10,00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10,00 -10,00 -10.00 -10,00 -10,00 -50.00 -50.00 -50,00 -40.00 -40.00 -40.00 -40,00 -40.00 -40.00 -40,00 -40.00 -40.00 -30.00 -25.00 -25.00 -25,00 -75.00 -70.00 -70.00 -70.00 -10.00 -10.00 -10.00 -10,00 -50.00 -50.00 -40.00 -40.00 -40.00 -40,00 -40.00 -40.00 -40,00 -40.00 40.00 -]0,00 -30.00 -30.00 -25.00 -25,00 -75.00 -70.00 -20,00 -65.00 -65,00 -65.00 -62.00 -62,00 -10.00 -10.00 -10,00 -10,00 -10,00 -10.00 -50,00 -50.00 -50.00 -40,00 -40,00 -40.00 -40.00 -40.00 -40.00 -40.00 -30,00 -30.00 -25.00 -25.00 -25.00 -25.00 -70,00 -70.00 -70,00 -65.00 -65.00 -65.00 -62,00 -62.00 -10.00 -10.00 -10,00 -10.00 -10.00 -10.00 -50,00 -50,00 -50,00 -40.00 -40,00 -40,00 -40.00 "40.00 -40.00 -30,00 -30,00 -30,00 -30.00 -25.00 -25,00 -25.00 -70.00 -70.00 -70.00 -65.00 -65.00 -62.00 -62.00 -62.00 -10,00 -lO.O0 -10,00 -10.00 -10,00 -10.00 -10.00 -10.00 -10.00 -10,00 -10.00 -10.00 -10,00 -10.00 -lO.O0 -10,00 -50.00 -50.00 -50.00 -40.00 -40.00 -40.00 -40.00 -30.00 -30.00 -25.00 -30.00 -30.00 -25.00 -25.00 -25.00 -25.00 -70.00 -70,00 -70,00 -65,00 -65.00 -62.00 -62.00 -12.00 -10.00 -lO.O0 -lO.O0 -10,00 -10.00 -10.00 -50.00 -50,00 -40.00 -40,00 -40,00 -40.00 -30.00 -30.00 -25,00 -30,00 -30,00 -25,00 -25,00 -25.00 -25.00 -25.00 -70.00 -70.00 -65,00 -65.00 -65.00 -62.00 -62.00 -10.00 -10.00 -10.00 10,00 -10.00 -10,00 -10.00 10.00 -10,00 -lO.O0 -10.00 -50.00 -50,00 -40.00 -40,00 -30.00 -30.00 -25,00 -30.00 -30.00 -30,00 -30.00 -25.00 -25.00 -25,00 -25,00 -70.00 -70.00 -70.00 -65,00 -65.00 -65.00 -62.00 -12,00 -12.00 -10.00 -10.00 -10.00 -10,00 -10.00 -10,00 -50,00 -50.00 -40,00 -30.00 -25.00 -30.00 -30.00 -30,00 -30.00 -30.00 -30.00 -25,00 -25,00 -25,00 -25.00 -70.00 -70,00 -70.00 65.00 -65.00 -65,00 -62.00 -12.00 -lO.O0 -lO.O0 -10.00 -10,00 -10,00 -lO.O0 -lO,OO 50,00 -50,00 -40.00 -30.00 -30.00 -30.00 -30.00 -30,00 -30.00 -30,00 -30.00 -25.00 25.00 -25.00 -25.00 -70.00 -70.00 -70.00 -65.00 -65.00 -65.00 -62,00 -12,00 -10,00 -10,00 -10,00 -lO,O0 -10.00 -10.00 -10,00 35 -20,00 -50,00 -40.00 -25.00 -30.00 -30,00 -30.00 -30,00 -30,00 -30.00 -30.00 -30.00 -25.00 -25,00 -25.00 -75.00 -70.00 -70,00 -65,00 -65.00 -65.00 -62.00 -10,00 -10,00 -10.00 -10,00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10,00 -10,00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10,00 -10,00 36 -00.00 -70.00 -50.00 -30.00 -30.00 -30.00 -30.00 -30.00 -30.00 30.00 -30.00 -30.00 -25.00 -25.00 -25.00 -75.00 -70,00 -70.00 -65.00 -65.00 -15.00 -12.00 -12.00 -10.00 -10.00 -10,00 -10.00 -10,00 -10.00 -10.00 -10.00 -10,00 -10.00 -10,00 -10,00 -10,00 -10,00 -10.00 -10.00 -10.00 -10,00 -10.00 -10,00 -10.00 -10.00 -10.00 -10.00 -10,00 -10,00 -10.00 -10.00 -10.00 -10.00 -10.00 37 -80.00 -80.00 -50.00 -40.00 -40.00 -30.00 -30,00 -30.00 -30.00 -30.00 -30.00 -30,00 -30.00 -25.00 -25,00 -75,00 -?0.00 -70.00 -70,00 -65.00 -15.00 -12,00 -12.00 -10,00 -10.00 -10.00 -10.00 -12.00 -12.00 -10,00 -10,00 -10.00 -12.00 -12,00 -12,00 -12.00 -12.00 -12.00 -10,00 -10.00 -10,00 -10,00 -10.00 -10,00 -12.00 -10,00 -10.00 -10.00 -10.00 -10.00 -10,00 -10.00 -10.00 -10.00 38 -80.00 -80.00 -70.00 -40.00 -40,00 -40.00 -30.00 -30,00 -30,00 -30.00 -30.00 -30,00 -30,00 -30.00 -25.00 -75.00 -75.00 -70.00 -70.00 -15.00 -15.00 -12,00 -12,00 -10.00 -10,00 -12.00 -12.00 -12.00 -12,00 -12.00 -10.00 -12.00 -12.00 -12,00 -12,00 -15,00 12,00 -12,00 -12.00 -12.00 -12.00 -12,00 -12.00 -12.00 -10.00 -10,00 -10.00 -10,00 -10.00 -10,00 -10,00 -10,00 -10.00 -10.00 39 -80,00 -80.00 -50,00 -40,00 -40,00 -30,00 -30,00 -30.00 -30,00 -30.00 -30,00 -30,00 -30.00 -30.00 -25.00 -75.00 -75.00 -70.00 -]0.00 -15.00 -12.00 -10.00 -10,00 -10.00 -10,00 -12.00 -12,00 -12.00 -12.00 -12.00 -12,00 -15,00 -15.00 -15,00 -15,00 -15,00 -15,00 -15.00 -15.00 -15.00 -15.00 -12.00 -12.00 -12.00 -10.00 -10,00 -10,00 -10.00 -10.00 -10.00 40 -80.00 -80.00 -80.00 -40.00 -30.00 -30,00 -40.00 -40,00 -40.00 -40.00 -40.00 -30,00 -30.00 -30.00 -30,00 -25.00 -25.00 -25.00 -20.00 -15.00 -15,00 -12.00 -10.00 -10,00 -12.00 -12.00 -15.00 -15.00 -15.00 -15.00 -15.00 -15,00 -20,00 -20,00 -20.00 -20,00 -20.00 -20,00 -20,00 -20.00 -15.00 -15,00 -15,00 -12.00 -12.00 -10.00 -lO,O0 -10.00 -10.00 -10.00 0 41 -80,00 -80.00 -80,00 -80.00 -30.00 -30.00 -40.00 -40.00 -40,00 -40,00 -40,00 -40,00 -40.00 -30.00 -30.00 -30.00 -25.00 -25.00 -25.00 -20,00 -20,00 -20.00 -20,00 -20.00 -20,00 -25.00 -25,00 -25,00 -25.00 -20.00 -20.00 -20.00 -15.00 -15.00 -12.00 -lO.O0 -12.00 -10,00 -10,00 -10.00 -10.00 -10.00 -10,00 -10.00 0 42 -70,00 -70.00 -70,00 -70,00 -30,00 -40.00 -40.00 -40.00 -40,00 -40.00 -40.00 -40,00 -40,00 -40,00 -30,00 -30.00 -30,00 -30.00 -25.00 -25.00 -20.00 -15,00 -15,00 -15.00 -20,00 -20.00 -20,00 -25,00 -25.00 -25,00 -25.00 -25.00 -25.00 -25.00 -25.00 -25,00 -25.00 -30.00 -30,00 -25.00 0 43 -70.00 -70.00 -70.00 -40.00 -40.00 -40.00 -50.00 -50.00 -50.00 -50.00 -50.00 -40,00 -40.00 -40.00 -40,00 -40.00 -30.00 -30.00 -30.00 -30.00 -25,00 -25.00 -25,00 -25.00 -25.00 -25.00 -30.00 -30.00 -30.00 -30.00 -30,00 -30,00 -30,00 -30,00 -30,00 -30,00 -30.00 -30,00 -30,00 -30,00 -10.00 -lO.00 -lO.OD -10.00 0 44 -70.00 -70.00 -70.00 -40.00 -50,00 -50,00 -50.00 -50,00 -50,00 -$0,00 -50.00 -50.00 -50,00 -40.00 -40,00 -40,00 -40,00 -40,00 -40,00 -30.00 -30.00 -30.00 -30.00 -30.00 -30,00 -30.00 -40,00 -40.00 -40.00 -40,00 -30.00 -30,00 -30.00 -30.00 -30.00 -30.00 -30.00 -30.00 -30,00 -30.00 -30,00 -30.00 -30.00 -25.00 -20,00 -20.00 -15.00 -12,00 -10,00 -10.00 -10,00 -10.00 -10.00 -10,00 0 45 -70,00 -70.00 -70.00 -70,00 -70.00 -70,00 -70.00 -70.00 -50,00 -50.00 -50.00 -50,00 -50.00 -50.00 -50.00 -50.00 -40.00 -40.00 -40.00 -40.00 -50.00 -40.00 -40.00 -40.00 -40.00 -40,00 -40,00 -40.00 -40.00 -40.00 -40,00 -30.00 -30.00 -30,00 -30,00 -30,00 -30.00 -30.00 -30,00 -30,00 -30.00 -30.00 -30.00 -25.00 -25,00 -25.00 -20.00 -15.00 -10.00 -10.00 0 46 -70.00 -70.00 -70.00 -70.00 -70.00 -70,00 -70.00 -70.00 -70.00 -50.00 -50.00 -50,00 50,00 -50,00 -50.00 -50,00 -50.00 -50,00 -50.00 -50.00 -40,00 -40,00 -40,O0 -40.00 -40,00 -40,00 -40.00 -40,00 -40.00 -40,00 -40.00 -30,00 -30.00 -30.00 -30.00 -30.00 -30.00 -30.00 -30.00 -30.00 -30,00 -30.00 -25.00 -25,00 -25,00 -25.00 -20,00 -20,00 -12,00 -10,00 0 47 -70.00 -70.00 -70,00 -70.00 -70.00 -70.00 -70.00 -70.00 -70.00 -50.00 -50.00 -50,00 -50.00 -50.00 -50.00 -50.00 -50,00 -50.00 -50.00 -50.00 -40.00 -40.00 -40.00 -40.00 -40.00 -40,00 -40.00 -40.00 -40.00 -40.00 -40.00 -30.00 -30.00 -30,00 -30.00 -30,00 -30.00 -30.00 -30.00 -30,00 -30.00 -30.00 -25.00 -25.00 -25,00 -25,00 -20,00 -20.00 -20.00 -12,00 0 48 -70.00 -70.00 -70.00 -70.00 -70,00 -70,00 -70.00 -70.00 -70.00 -50.00 -50,00 -50.00 -50.00 -50,00 -50,00 -50.00 -50.00 -50.00 -50.00 -50.00 -40,00 -40.00 -40.00 -40,00 -40.00 -40,00 -40.00 -40.00 -40.00 -40.00 -40.00 -30.00 -30,00 -30,00 -30,00 -30.00 -30.00 -30.00 -30.00 -30.00 -30.00 -30.00 -25,00 -25.00 -25.00 -25,00 -20.00 -20,00 -20.00 -15.00 -12.00 -10.00 -10.00 -10.00 0 VERT HYD COND /THICF]4ESS FOR LAYER 1 WILL BE REAO ON UNIT 71 USING FORe'AT: (54F4.0] I 2 3 4 5 6 7 8 9 10 21 22 21 24 25 26 27 28 29 30 41 42 43 44 45 46 47 48 49 50 0 i .1000 .1000 ,1000 ,1000 .1000 .1000 ,1000 .1000 .1000 .1000 .1000 .1000 .1000 ,!000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1DO0 .1000 ,1000 .1000 .1000 .1000 .1000 ,1000 .i000 .1000 .1000 ,1000 .1000 .1000 .1000 .1000 .1000 .1000 ,1000 .[000 .1000 .1000 .1000 .1000 .1000 .1000 0 5 .1000 .1000 .1000 .1000 ,1000 ,1000 .1000 .tO00 .1000 .1000 .1000 ,1000 .1000 .1000 .1000 .1000 ,1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 ,1000 .1000 ,1000 ,1000 .1000 .1000 .1000 .1000 .1000 .1000 ,1000 .1000 .1000 ,1000 .1000 ,1000 .1000 .1000 .1000 ,1000 .1000 .1000 .1000 .1000 .1000 .1000 ,1000 ,1000 .1000 .1000 0 6 0 7 0 8 0 9 0 10 2o .1000 .1000 .1000 .1000 .i000 ,1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 ,1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 ,1000 .1000 .1000 .I000 .1000 .1000 .1000 ,1000 .1000 .1000 .lO00 .1000 .1000 ,1000 .1000 .1000 *1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 ,1000 ,10o0 ,1000 ,1000 ,1000 ,1000 .[000 ,1000 ,1000 .100o ,1000 .1000 .1000 .1000 .1000 .1000 .to00 .1000 .1000 .1oo0 ,1000 ,1000 .1000 .1000 ,1000 ,1000 .1000 .1000 .1000 ,1000 .1000 .1000 .1000 .1000 .1000 .1000 .kO00 .1000 .1000 .1000 ,1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 ,1000 .1000 .1000 .~000 .1000 ,1000 .1000 .1000 ,1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 ,1000 .1000 .1000 ,1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 ,1000 ,1000 ,10o0 .1000 .1000 ,1000 .1000 ,1o00 .1000 .1000 ,1000 ,1000 .1000 .1000 .1000 .1000 ,1000 ,1000 ,1000 .1000 .1000 .1000 ,1000 ,1000 ,1000 ,1000 .1000 .1000 .1000 ,1000 .1000 .1000 .1000 .1000 .1000 .1000 ,1000 .1000 .1000 ,1000 ,1000 ,1000 .1000 .1000 ,1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 ,1000 ,1000 ,1000 ,1000 .1000 ,1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 ,1000 .1000 .1000 .1000 .1000 .1000 .1000 ,1000 ,1000 .1000 .1000 .1000 .lOOO .lOOO .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 23 .lO00 .1000 .1000 .1000 .1000 .1000 .1000 ,1000 ,1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 ,1000 ,1000 ,1000 25 .1000 ,1000 .1000 .1000 .1000 .1000 ,1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 ,1000 .1000 .1000 .1000 ,1000 ,1000 ,1000 .lO00 *1000 ,1000 .1000 .1000 ,1000 ,1000 '1000 .100o .1000 .1000 .1000 .1000 ,1000 .1000 .1000 ,1000 .1000 ,1000 .1o00 .1000 ,1000 .1000 ,1000 .1000 .1000 .lo00 .1000 .1000 .i000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 0 32 .1000 .1000 .i000 .1000 .1000 .1000 .1000 ,1000 .1000 ,1000 ,100o .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 ,1000 .1000 .1000 ,1000 0 34 ,lO00 .1000 .1000 ,1000 ,1000 ,1000 .1000 .1000 ,lO00 ,1000 ,1000 ,1000 ,100{) ,1000 ,1000 .1000 ,t000 ,1000 .1000 .1000 .1000 .1000 *1000 .1000 .1000 ,1000 .1000 ,1000 .1000 .1000 ,1000 .1000 ,1000 .1000 ,1000 .1000 .1000 .1000 .LO00 .1000 ,1000 .1000 .1000 ,1000 .1000 .1000 .1000 .1000 ,1000 .1000 ,1000 .1000 ,1000 .1000 0 35 .1000 .LO00 .1000 ,1000 .1000 .1000 .LO00 .1000 ,1000 .1000 .LO00 ,1000 .1000 .1000 .1000 .LO00 .1000 .1000 .1000 .1000 .LO00 .1000 ,1000 .1000 ,1000 .LO00 ,~000 .1000 .1000 ,1000 .LO00 .1000 ,1000 .1000 .1000 ,1000 .LO00 .1000 .1000 .LO00 .1000 .1000 .100o .1000 .1000 .1000 .1000 .1000 .1000 .1000 .10o0 .1000 .1000 .1000 0 36 .1000 .1000 ,LO00 .1000 ,1000 ,1000 .1000 .1000 .LO00 .1000 .1000 .1000 .1000 ,1000 ,1000 ,1000 .1000 .1000 .1000 ,1000 .1000 .1000 .10o0 .1000 .1000 .1000 .1000 .1000 .1000 .1000 ,1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 0 37 .1000 ,1000 .1000 .1000 ,1000 ,1000 .1000 .1000 ,1000 .1000 .1000 ,1000 ,1000 ,1000 .1000 .1000 .1000 .1000 .1000 .1000 ,1000 .1000 .1000 .1000 ,1000 ,1000 ,1000 .LO00 ,1000 .1000 .1000 .1000 .1000 .1000 ,1000 .1000 ,1000 ,LO00 ,1000 ,1000 0 38 .lOGO .1000 ,1000 ,1000 .1000 .1000 .lO00 .1000 .lOOO .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 0 43 .1000 .1000 .1000 ,1000 ,1000 ,1000 .[000 ,lO00 .1000 .1000 ,1000 .1000 ,1000 .1000 ,1000 ,1000 ,1000 .lO00 ,1000 .10o0 .1000 .1000 .1000 .1000 .1000 .1000 ,1000 .1000 .lO00 .1000 0 46 .1000 ,1000 .1000 .1000 ,1000 .1000 ,1000 ,1000 ~1000 .1000 TRANBMIS. ALONG ROWS FOR LAYER 2 WILL BE READ ON UNIT 72 USING FORMAT: (54F4.0) ).0 X2 0 19 0 2O 0 21 0 22 0 24 0 25 0 26 0 27 0 28 29 3O 32 33 34 1,O000E-IO 1.0000E-10 I.O000E-IO I.O000E-IO 1.0000£-10 1.0000E-10 1,O000E-10 1.0000£-10 I.O000E-IO 1.0000E-10 0 35 0 36 0 38 0 39 42 45 46 47 hOOOOg-lO hOOOOE-lO 1.O000E-IO I.O000E-IO hOOOOE-lO hO000~-IO 1.O000g-lO hOOOOE-lO hOOOOE-lO [.O000E [0 1,0000E-IO 1.0000E-I0 1.0000E-iO 1.0000E-10 1,0000E-lO h0OOOE-10 h0000g-lO I.O000E-IO I,O000E-iO hOOOOE-lO hOOOOE-lO hOOOOE-lO I,O000E~IO h0000E-10 1.0000E-lO hOO00g-lO h0000E~10 1,0000g-[O h0000E-10 1.0000E-10 h0000g-10 hOOOOE-lO I.OOOOE-~O I.O000E-IO hOOOOE-lO I.O000E-IO 1,O000E-IO 1,O000E-IO hOOOOE-IO hOOOOE-lO 1.O000E-IO 1,O000E-iO h0OOOE-10 h0000E-10 1.0000E-lO I,O000E-iO 1.00O0E-IO hOOOOE-lO I.O000E-iO hOOOOg-lO 1.0000E-iO hOOOOE-lO hO000E-10 1.0000E-10 1.0000E-10 hOOOOE~lO hOOOOE-lO I,O000E-IO 1.O000E-IO VERT HYD COND /?HICFNE$S FOR I~YER 2 WILL BE READ ON UNIT 73 USING FORMAT; (54F4.0) 2 3 4 5 6 7 8 9 10 22 23 24 25 26 27 28 29 30 32 33 34 35 36 37 38 39 40 42 43 44 45 46 47 48 49 $0 3,0000E-06 3.0000E-06 3.0000E-06 3.0000g-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E~06 3.0000E-O6 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000Z-06 3.0000E-06 3,0000E=06 3.0000£-06 2 3.0000g-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000£-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3,0000E-06 3.0000E-06 3.0000£~06 3.0000E-06 3.0000E-06 3,0000E~06 3 3.0000E-06 3.0000E-06 3.0000g-06 3.0000g-06 3.0000£-06 3.0000£-06 3.0000E~06 3.0000£~06 ),0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000g-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E~06 3.0000M-06 3,0000E-06 3.0000~-06 3.0000E-06 3.0000£-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 4 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000£~06 3,0000E-06 3.0000£-06 3,0000E-06 3,0000£-06 3,0000E-06 3.0000E-06 3,0000~-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E~06 3,0000E 06 3,0000E-06 3.0000E-06 5 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E~06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0OOOE-06 3,0000E-06 3.0000E-06 3.0000~-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 6 3.0000E-06 3,OO00E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0OOOE-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000£-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000~-06 3.0000E~06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000g-06 3,0000E-06 3.O000E-06 3.0000E-06 3.0000E-06 3.000OE-06 7 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E 06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E~06 3.0000E-06 3.0000E-06 3,0000E~06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.00OOE~06 3.0000~-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 8 3.0000E-06 3.0000E-06 3,0000E~06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E 06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-O6 3.000OE-O6 9 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000g-O6 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E~06 3.0000E-O6 3,OOOOE-06 3.OOO0£-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 10 3,0000E-06 3,0000E-06 3.0000E-O6 3.000OE~06 3,OO00E-06 3,0000~-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E~06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 11 3.0000E-06 3.0000E-06 3.0000~-06 3.0000E-06 3,0000E=06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E 06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000£-06 3.OOOOE-06 3.0000E-06 3.0000E-06 12 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.00DOE 06 3.0000E-O6 3,0000E-06 3.0000E-06 3.0000E-06 3.0ODOE-06 3.0000E-06 3,0ODDS-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000~-06 3.0000E-06 3.0000E-06 3,0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000£-06 0 13 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000~-06 3,OO00g-06 3.0000£-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000~-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E~06 3.0000E-06 3.0000E-06 3.0000E-06 ].OOO0E-O6 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 0 14 3.OO00£-06 3.0000E-06 3,0OOOE-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E~06 3,0000E-06 3.O000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000E~06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E~06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 0 15 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E 06 3.0000E~06 3,0000~-06 3.0000E-06 3,0000~-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.O000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3.OODOE-06 3,0000E-06 3.0000£-06 0 16 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.~000E-06 3.0000E-0§ 3.0000£-06 3,0000E-06 3.0000~-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000£-06 3,0000E-06 3,0000E~06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000£-06 3,0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.O000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E~06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E~06 3,0000E-06 3.0000~06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£~06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.000QE-06 3,O00OE-06 3.0000E-06 3.0000E-06 3.0000E-06 3.00~0E~06 3.0000£-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000£-D6 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E*06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0D00E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0~00E*06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000g-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000~-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000£-06 3.0000£~06 3,0000£=06 3.0000£~06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000~-06 3,0000E-06 3.0000E-06 3.0000E~06 3.0000£-06 3.0000£-06 3.0000£-06 3.0000E-06 3,0000~-06 3.0000E~06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E~06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E~06 3.0000£-06 3.0000E-06 3.0000E-06 3,0000E~06 3.0000E-06 3.0000E 06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0OOOE~06 3,0000E-O6 3,O000E-06 3.0000E-O6 3.0000£-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000~-06 3.0000E-06 3.0000E~06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,O000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.Q000E-06 3.0000E-06 3,0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E~06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000£-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E~06 3,0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,O000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3,0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3,0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-O6 3.0000E-06 3,0OOOE-06 3.0000E-06 3.0000£-06 3,0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E~06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000£-06 3.0000~ 06 3.0000E-O6 3,OO00E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,00OOE-06 3.0000E-O6 3,0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 2O 22 23 0 25 26 27 28 29 30 32 3,0000E-06 3,0000E-06 3,0000E-06 3.0000~-06 3.0000E~06 3.0000E-06 3.0000£-06 3.0000£-06 3,0000E-06 3,0000~-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-O6 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-O6 3.0000E-06 3,000OE-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000~-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000g-06 3,0000E-06 3.0000E~06 3,0000E-06 3,0000E-06 3.0000~-06 3,0000E-06 3.OO00E-06 3,0000E-06 3.0000E-06 3.00OOE-06 3,0000E 06 3,0000E-06 3.OO00E-O6 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.000OE-06 3,0000E 06 3,0000E-06 3,O000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000£-06 3.0000E-06 3.00OOE-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E~06 3,0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.OOO0E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.OO0OE-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000£~06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E 06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000£-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3,0000E-O6 3.0000E-06 3.0000£-06 3,0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3,000~E-06 3,0~00E-06 3.0000E-06 3.0000E-06 3,00OOE-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,00DOE 06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.00OOE 06 3,0000E-06 3.0000E-06 3.0000E-06 3.OO00E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E 06 3.0000E-06 3,00OOE-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000C-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.O000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-O6 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.O00OE-06 3.0000E-06 3,0000E-06 3.000OE-O6 3,0000E 06 3,0000E-O6 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.O000E-06 3.0000E-06 3,OOOOE-06 3,0000E-O6 3.0000E-06 3,O00OE-06 3,0000E-06 3,0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-O6 3.0000E 06 3.OOOOE-06 3.00OOE-06 3.0000E-06 3.0000E-06 3.0000E 06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3.O000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E 06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.000OE-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000£-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 :3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.~000E-06 3,0000E-06 3.0000E-06 3.0000E-O6 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.00OOE-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0OOOE-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3,OOO0E-06 3,0000£-06 3.0000E-06 3,OOO0E-06 3,0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000£-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3,0000E-06 3.0000E-06 3,O000E-06 3,0000E-06 3,0000E-06 3.000OE-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.Q000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-0§ 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.000OE-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,00OOE-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E 06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.O0OOE-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000~-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,00OOE-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E~06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000~-06 3.0000E-06 3.0000£-06 3,0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3,0000E-O6 3,000OE-06 3,00OOE-O6 3.000OE-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.OOOOE-06 3.0000E-06 3.0000E-06 3.0000E-O6 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3,0000E-06 3.0000E~06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E=06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E=06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.000~E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-~6 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E,-06 3.0000E-06 3,0000E~06 3,0000E-06 3.0000~06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000Z-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000~-06 3.0000E-06 3,0000~-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000~-06 3.0000~-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000£-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000£-06 3,0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-O6 3.0000E-06 3.0000E-06 3.O000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,O000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.O000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.O000E-06 0 36 0 38 0 39 42 44 46 47 48 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.OO00E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.O000E 06 3,00OOE-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E~06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E 06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,OOOOE-06 3.0000E-06 3.0000E~06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-O6 3.0000£-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-O6 3,0000£-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.O000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000£-06 3.0OOOE-06 3,0000E-06 3.00005-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000£-06 3.0000E-O6 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.000OE-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.OOOOE-O6 3.00OOE-06 3.0000E-06 3.0000E-O6 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E 06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-O6 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E'06 3,O00OE-06 3,0000E-06 3,0000E-06 3.000OE-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000Z-06 3.00O0E 06 3.0000E~06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-O6 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.O000E~06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000£-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E~06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E--06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3.O000E-06 3.00OOE-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000£-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000~-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0DDOE-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000~-06 3.0000E-06 3.0000E-06 3.OOOOE-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000~-06 3.00005-06 3,0000E.-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000~-06 3.0000E-06 3,0000£-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000£-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000g-06 3.0000E-06 3.0000E-06 3.0000g-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000E~06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E~06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E~06 3.0000E-06 3.0000E-06 3.0000E~06 3.0000E~06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E~06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.000OE-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E~06 3.0000E-06 3.0000E406 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E406 3,0000E-06 3.0000E~06 3.0000E-06 3.0000£406 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E406 3.0000E-06 3.0000E-06 3.0000E-06 3.0§00E406 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.00OOE-06 3.0000E-06 3.00OOE-O6 3.0000E-06 3.O000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3~0000E-06 3,0000E-06 3.0000E-06 3.000OE-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000B-06 3.0000E-06 3,0000E-06 3,0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E406 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E406 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E~06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000£-06 3.0000E-06 3.0000E406 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000g-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000£-06 3.0000E 06 3.OO00E-06 3.0000E-06 3.0000£-06 3.0000E-06 3,0000E-06 3~0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0OOOE-06 3,0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E406 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E406 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000~-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E406 3.0000~-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E406 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3~0000£406 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 ~.0000E-06 3,0000E406 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3,0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.0000E-06 3,0000£-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000E~06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000£406 3.0000E-06 3.0000E-06 3.0000E406 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E406 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000£-06 3.0000E-06 3.0000E-O6 3.0000E-06 3.0000E-06 3.0000£-06 3,0OOOE-06 3,0000E-06 3.0000E-06 3.0000E-06 3.0000Z-06 3,0000E406 3.0000E-06 3,0000E-06 3,0000E~06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.00002-06 3.0000E-06 3,0000E-06 3.00002-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000£-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E 06 3,0000E-06 3.0000£-06 3,0000£-06 3.0000E-06 3.0000£-06 3.0000~-06 3,0000E-06 3.0000E-06 3,0000E~06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3.0000E-06 3,0000E-06 3.00002-06 3,0000E-06 3.0000E-06 1 2 3 4 5 6 7 8 9 10 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 0 I 10.00 10.00 10.00 10.00 10,00 10.00 10,00 10,00 10,00 10,00 10,00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 IO,O0 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 [0,00 10.00 10.00 10.00 10.o0 10,00 10,00 10.00 10.00 10.00 10.00 lO.O0 10,00 10,00 10.00 10.00 2 IO.O0 10.00 10.00 10.00 10.00 10.00 10,00 10.00 10.00 10.00 10,00 10.00 10.00 10.00 10.00 lO.O0 10.00 10,00 10.00 10.00 10.00 10.00 10.00 10.00 lO.O0 10.00 10.00 10,00 10.00 10.00 lO,D0 10,00 10.00 10.00 10.00 10,00 10.00 10,00 10.00 10.00 10.00 1o.00 10.00 10,00 10.00 10,00 10,00 10,00 10.00 lo.o0 10.00 10,00 iO.O0 10.00 10.00 10.00 10,00 10.00 10.00 10,00 10,00 10.00 10.00 10.00 10,00 10,00 10,00 10,00 10.00 10.00 10,00 10.00 10.00 10,00 10,00 10,00 10.00 10.00 10.00 10,00 10,O0 lO.00 10.00 10,00 10.00 10.00 10.00 10.00 10.00 10,00 10.00 10.00 10.00 10,00 10,00 10.00 10,00 10.00 10,00 10,00 6 10,00 10.00 10.00 10.00 10.00 10.00 10,00 10,00 10.00 10.00 10,00 10.00 10.00 10.00 10.00 10.00 10.00 10,00 10.00 10.00 10,00 lO.D0 10.00 10,00 10.00 10.00 lO.O0 10.00 10.00 10.00 10.00 10,00 10.00 10.00 10,00 10.00 10,00 10.00 10.00 10.00 10,00 10,00 10,00 10.00 10.00 10,00 10.00 10,00 10.0o 10,00 8 10.00 10.00 10.00 10.00 10,00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 I0,00 10,00 10.00 10,00 10.00 10.00 10.00 10.00 10.00 10.00 10,00 10.00 10.00 10.00 10.00 10.00 10.00 10,00 10.00 10.00 10.00 10,00 10,00 10,00 10,00 10.00 10.00 10,00 10.00 10,00 10,00 10,00 10,00 10.00 10.00 10.00 i0.00 10.00 10.00 10.00 ~0.00 0 10 10.00 10.0O lO.00 10,00 10.00 10.00 10.00 10.00 10.00 10,00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10,00 10.00 10.00 10,00 10,00 10,00 10.00 10,00 10.00 10.00 10,00 10.00 lO,O0 lO.O0 10,00 10.00 10,00 10,00 10.00 10.00 10.00 10.00 10.00 10.00 10,00 10.00 10,00 10.00 10.00 10.00 10.00 10.00 10,00 0 11 10,00 10.00 10,00 10,00 10.00 10,00 10.00 10,00 10,00 10.0o 10,00 10,00 10.00 10,00 10.00 10.00 10,00 10.00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10.00 10.00 10,00 10.00 10.00 10.00 10.00 10,00 10.00 10,00 10,00 10.00 10,00 10.00 10.00 10,00 lO,O0 10,00 10.00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10.00 10.00 0 12 10.00 10.00 10.00 10.00 10.00 10,00 10.00 10.00 10,00 10.00 10.00 10,00 10.00 10.0o 10.00 10,00 10.00 10.00 10,00 ~0,00 10,00 10.00 10,00 10.00 10,00 10,00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10,00 10,00 10.00 10,00 10.00 10.00 10.00 10.00 10.00 0 13 10,00 10.00 10,00 10.00 10,00 10.00 10.00 10.00 [0,00 10,00 10.00 10.00 10.00 10.00 10.00 10.00 10,00 10,00 t0.00 10,00 10.00 10,00 10,00 10.00 10.00 10,00 10.00 10.00 10,00 10.00 10,OO 10,00 10.00 10,00 10,00 10.00 10,00 10.00 10.00 10,00 10.00 10,00 10,00 10,00 10.00 10.00 10.00 10,00 10,00 10.00 0 14 0 15 2O 22 23 24 25 26 27 29 10,00 10.00 10,00 10,00 10.00 /0.00 10.00 LO.O0 [0,00 [0,00 [0.00 10.00 10,00 10.00 10,00 10.00 10.00 10.00 10.00 9.9990E+04 10,00 10.00 lO,O0 10.00 10.00 10.00 10.o0 9.9990E+04 9.999OE+04 10.00 10,00 10.00 10.00 9.9990E+04 9.9990E+04 10.00 10,00 10,00 10,00 9.9990E+04 9,9990E+0d 9.9990E+04 9,9990E+04 10.00 10.00 9.9990E+04 10.00 10.00 10.00 9,999OE+04 10,00 10,00 10.00 10.00 10.00 10.00 10,00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10,00 10.00 10.00 10.00 10,00 10.00 10,00 10,00 10,00 10.00 10,00 ~0,00 10.00 10,00 10.00 36 10.o0 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10,00 10,00 10,00 10.00 10~00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10,00 10,00 lO.O0 10.00 10.00 10,00 42 10.00 10.00 10,00 10.00 10,00 9.9990E+04 9.9990E+04 10.00 10.00 10.00 10.00 10.00 10.00 10,00 10,00 10.00 10.00 10.00 10.00 10,00 10,00 10,00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10,00 10,00 10.00 10.00 10.00 10,00 10,00 10,00 10,00 10.00 10.00 10.00 10.00 10.00 10,00 10.00 10.00 10.00 10.00 10.00 10,00 10.00 10.00 10.00 10.00 10,00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10,00 10.00 10.00 10.00 10.00 10,00 10,00 10.00 10.00 10,00 lO,O0 10.00 10,00 10.00 10,00 10,00 10.00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10.00 10.00 10,00 0 47 10,00 10,00 10.00 10.00 lO.O0 ~0.00 10,00 10.00 10.00 10,00 10.00 10.00 10,oo 10.00 10.00 10.00 10.00 10.00 10,00 10.00 10.00 10,00 10,00 10,00 10.00 10,00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 0 48 10.00 10.00 10,00 10,00 10.00 10.00 10.00 10,00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10,00 10.00 10,00 10.00 10.00 10.00 10,00 10.00 i0,00 10,00 10.00 10,00 10,00 10.00 SOLUTION BY THE STRONGLY IMPLICIT PROCEDURE MAX IMDM ITEPOkTIONS ALLOWED FOR CLOSURE ~: 50 11 WELLS 50 ITERATIONS FOR TIME STEP 1 IN STRESS PERIOD 1 0~%XIM~IM HEAD CHANGE FOR EACH ITERATION: 3 30 29 -66.800 1 3 28 29 -66.800 2 3 25 29 -66.800 3 3 23 29 -66.800 4 3 [6 28 -66.800 5 3 18 26 66.800 6 27 23 -66.800 7 30 23 -66.900 8 30 21 -66,800 9 0 HEAD CH~GE IOkyER,ROW,COL HEAD C]L~NGE [~YER, ROW,COL HEAD CH~GqGE LAyER,ROW, COL HEAD C]L%NGE LAYER, ROW,COL HEAD CHANGE LAYER,ROW,COL -2.508 ( 3, 23, 29) -1.548 ( 3, 17, 27] -1.650 -.3991 ( 3, 24, 30) -.2787 ( 3, 24, 27) -.2756 -.8644E-01 ( 3, 24, 30) .6802E-01 ( 3, 28, 36) .5851E-01 -.$023E-01 ( 3, 26, 26] -.2479E-01 ( 3, 25, 23) -.3275E-01 -.2937E-01 ( 3, 26, 26) -.1912E-01 { 3, 25, 23) -.2648E-01 .6922E-01 { 3, 29, 35) .5008E-01 ( 3, 29, 35) .4001E-OI -.2630E-01 ( 3, 26, 26) -.1687E-01 [ 3, 25, 23) -.2313E-01 .6352E-01 ( 3, 29, 35) .4588E-01 ( 3, 29, 35) .3675E-01 -.2399E-01 ( 3, 26, 26) -.1538E-01 ( 3, 25, 23) -.2103E-01 OHEAD/DP~WDOWN PRINTOUT FLAG = 1 TOTAL BUDGET PRINTOUT FLAG = 0 3, 18, 28) -1.555 3, 23, 28) .2279 3, 14, 44) -.1326 3, 30, 38) -.8380E-01 3, 22, 40) -.1249 3, 30, 39) -.6865E-01 3, 13, 28) -1.220 3, 23, 26) -.8803 3, 12, 19) .2394 3, 23, 26) -.6767 3, 17, 33) 3, 24, 28) 3, 26, 35) 3, 29, 29) 3, 26, 35) 3, 29, 3, 26, 3, 29, 29) 3, 26, 35} 3, 29, 29) 4 7 8 9 2O 22 0 23 O25 .0 .0 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 -2.2 -2.4 -2.6 -2,9 -3.2 -3.6 -4.0 -4.4-5.0 -§.6 -6.3 -6.9 -8,4 -6.5 -5.5 23 26 30 32 33 34 35 36 39 0 42 0 44 -4.3 -2.7 -4.2 -2.7 -4.2 -3.0 -3.9 -2.8 -3.6 -3.6 -3.2 3.6 -3.6 -3.4 -3,4 -4.0 -3.7 -2.9 -2.7 -2.5 -2.7 -2.5 -4.6 -4,9 -2.7 -2.5 -4.4 -4.7 -2.7 -2.5 -4.2 -4,6 -2.6 -2.4 -4.0 -4.3 -2.6 -2.4 -3.7 -3,9 -3.5 -3.7 -2.5 -2.3 -3.3 -3.5 -2.4 -2,2 -3.2 -3.4 -5,6 -5,8 -2,3 -2,2 -5,3 -5.6 -4.8 -4,8 -4.6 -4.8 -2,2 -2.0 -3.7 -3.6 -3.6 -3,6 -3,6 -3,8 -3,6 -3.9 -3.3 -3.6 -5.9 -5.9 -5,9 -6,3 -5.2 -6,0 -4.8 -5.7 -3.6 -3.6 -3,6 -3.6 -3.7 -3.6 -3,9 -4,9 -3.7 -3.9 -3.3 -3,3 -2.9 -2.9 -2,6 -2.6 -2.3 -2.3 -5.5 -2.0 -5.7 -5.9 IN: IN: $ TOPinG E = .00OO0 STOPPAGE CONSTANT HEAD = 543.39 CONSTAN%' HEAD .00000 543.39 .00000 543.39 .00000 .00000 734.80 734.80 -191.41 -29.95 U.S. GEOLOGICAL SURVEy MODUiJIR FINITE-DIFFERENCE GROUND-WATER MODEL 0Denali View, ~chorage, Alaska January ?, 1998 3 Layers, 54 Columns, 48 Row - Steady State 3 LAYERS 48 ROWS 54 COLUMNS I STRESS PERIOD(S) IN SIMULATION MODEL TI~ l/NIT IS DAYS 0 9 0 10 0 12 0 13 29 36 39 0 2 0 3 0 4 0 5 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4B 49 50 51 52 53 54 0 6 0 7 0 8 0 9 0 10 0 13 0 2 0 3 5 6 7 9 23 25 26 28 30 34 .0000000 .0000000 .0000000 1,000000 m I / L/ O0